|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-13f-reports |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-13f-reports |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4818 |
|
- Rouge1: 0.3235 |
|
- Rouge2: 0.2725 |
|
- Rougel: 0.3146 |
|
- Rougelsum: 0.3161 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 11.4662 | 1.0 | 126 | 2.9329 | 0.2023 | 0.0998 | 0.1717 | 0.1792 | |
|
| 3.4401 | 2.0 | 252 | 1.9914 | 0.3142 | 0.2573 | 0.3015 | 0.3036 | |
|
| 2.5139 | 3.0 | 378 | 1.7493 | 0.3131 | 0.2576 | 0.3022 | 0.3039 | |
|
| 2.152 | 4.0 | 504 | 1.6465 | 0.3114 | 0.2564 | 0.3009 | 0.3024 | |
|
| 1.9624 | 5.0 | 630 | 1.5607 | 0.3202 | 0.2695 | 0.3114 | 0.3127 | |
|
| 1.851 | 6.0 | 756 | 1.5163 | 0.3205 | 0.2704 | 0.3101 | 0.311 | |
|
| 1.8002 | 7.0 | 882 | 1.4848 | 0.3225 | 0.2718 | 0.3148 | 0.3161 | |
|
| 1.7864 | 8.0 | 1008 | 1.4818 | 0.3235 | 0.2725 | 0.3146 | 0.3161 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.0 |
|
|