fine-tune-radia-v5
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5763
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.9282 | 0.09 | 5 | 0.8199 |
0.7119 | 0.17 | 10 | 0.7063 |
0.673 | 0.26 | 15 | 0.6752 |
0.6667 | 0.34 | 20 | 0.6584 |
0.6191 | 0.43 | 25 | 0.6408 |
0.6094 | 0.52 | 30 | 0.6226 |
0.5648 | 0.6 | 35 | 0.6080 |
0.5579 | 0.69 | 40 | 0.5964 |
0.5439 | 0.78 | 45 | 0.5867 |
0.5478 | 0.86 | 50 | 0.5763 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.14.7
- Tokenizers 0.15.0
Model tree for joedonino/fine-tune-radia-v5
Base model
meta-llama/Llama-2-7b-hf