PhiMerge-2.7B-Dare-daser
PhiMerge-2.7B-Dare-daser is a mixture of two techniques that are LaserQlora and Dora. This model is a DPO fine-tuned of johnsnowlabs/PhiMerge-2.7B-Dare using the argilla/distilabel-capybara-dpo-7k-binarized preference dataset. The model has been trained on top 16 projections (q_proj, k_proj, v_proj) based on snr values. This model has been trained for 1080 steps.
π Evaluation results
Coming Soon
Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "johnsnowlabs/PhiMerge-2.7B-Dare-daser"
messages = [{"role": "user", "content": "Explain what is Machine learning."}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-04
- train_batch_size: 1
- eval_batch_size: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: paged_adamw_32bit
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1080
LoRA Config
- lora_r: 16
- lora_alpha: 32
- lora_dropout: 0.05
- peft_use_dora: true
Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.17.0
- Tokenizers 0.15.0
- Downloads last month
- 12
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.