Edit model card

PhiMerge-2.7B-Dare-daser

image/png

PhiMerge-2.7B-Dare-daser is a mixture of two techniques that are LaserQlora and Dora. This model is a DPO fine-tuned of johnsnowlabs/PhiMerge-2.7B-Dare using the argilla/distilabel-capybara-dpo-7k-binarized preference dataset. The model has been trained on top 16 projections (q_proj, k_proj, v_proj) based on snr values. This model has been trained for 1080 steps.

πŸ† Evaluation results

Coming Soon

Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "johnsnowlabs/PhiMerge-2.7B-Dare-daser"
messages = [{"role": "user", "content": "Explain what is Machine learning."}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-04
  • train_batch_size: 1
  • eval_batch_size: 8
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: paged_adamw_32bit
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1080

LoRA Config

  • lora_r: 16
  • lora_alpha: 32
  • lora_dropout: 0.05
  • peft_use_dora: true

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.1.2+cu118
  • Datasets 2.17.0
  • Tokenizers 0.15.0
Downloads last month
12
Safetensors
Model size
2.65B params
Tensor type
F32
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train johnsnowlabs/PhiMerge-2.7B-Dare-daser