jonatasgrosman's picture
Update README.md
4b8a029
|
raw
history blame
5.71 kB
metadata
language: de
license: apache-2.0
datasets:
  - common_voice
  - mozilla-foundation/common_voice_6_0
metrics:
  - wer
  - cer
tags:
  - audio
  - automatic-speech-recognition
  - de
  - hf-asr-leaderboard
  - mozilla-foundation/common_voice_6_0
  - robust-speech-event
  - speech
  - xlsr-fine-tuning-week
model-index:
  - name: XLSR Wav2Vec2 German by Jonatas Grosman
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice de
          type: common_voice
          args: de
        metrics:
          - name: Test WER
            type: wer
            value: 12.06
          - name: Test CER
            type: cer
            value: 2.92
          - name: Test WER (+LM)
            type: wer
            value: 8.74
          - name: Test CER (+LM)
            type: cer
            value: 2.28
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Dev Data
          type: speech-recognition-community-v2/dev_data
          args: de
        metrics:
          - name: Dev WER
            type: wer
            value: 32.75
          - name: Dev CER
            type: cer
            value: 13.64
          - name: Dev WER (+LM)
            type: wer
            value: 26.6
          - name: Dev CER (+LM)
            type: cer
            value: 12.58

Fine-tuned XLSR-53 large model for speech recognition in German

Fine-tuned facebook/wav2vec2-large-xlsr-53 on German using the train and validation splits of Common Voice 6.1. When using this model, make sure that your speech input is sampled at 16kHz.

This model has been fine-tuned thanks to the GPU credits generously given by the OVHcloud :)

The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint

Usage

The model can be used directly (without a language model) as follows...

Using the HuggingSound library:

from huggingsound import SpeechRecognitionModel

model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-german")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]

transcriptions = model.transcribe(audio_paths)

Writing your own inference script:

import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

LANG_ID = "de"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-german"
SAMPLES = 10

test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")

processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["sentence"] = batch["sentence"].upper()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)

for i, predicted_sentence in enumerate(predicted_sentences):
    print("-" * 100)
    print("Reference:", test_dataset[i]["sentence"])
    print("Prediction:", predicted_sentence)
Reference Prediction
ZIEHT EUCH BITTE DRAUSSEN DIE SCHUHE AUS. ZIEHT EUCH BITTE DRAUSSEN DIE SCHUHE AUS
ES KOMMT ZUM SHOWDOWN IN GSTAAD. ES KOMMT ZUG STUNDEDAUTENESTERKT
IHRE FOTOSTRECKEN ERSCHIENEN IN MODEMAGAZINEN WIE DER VOGUE, HARPER’S BAZAAR UND MARIE CLAIRE. IHRE FOTELSTRECKEN ERSCHIENEN MIT MODEMAGAZINEN WIE DER VALG AT DAS BASIN MA RIQUAIR
FELIPE HAT EINE AUCH FÜR MONARCHEN UNGEWÖHNLICH LANGE TITELLISTE. FELIPPE HAT EINE AUCH FÜR MONACHEN UNGEWÖHNLICH LANGE TITELLISTE
ER WURDE ZU EHREN DES REICHSKANZLERS OTTO VON BISMARCK ERRICHTET. ER WURDE ZU EHREN DES REICHSKANZLERS OTTO VON BISMARCK ERRICHTET M
WAS SOLLS, ICH BIN BEREIT. WAS SOLL'S ICH BIN BEREIT
DAS INTERNET BESTEHT AUS VIELEN COMPUTERN, DIE MITEINANDER VERBUNDEN SIND. DAS INTERNET BESTEHT AUS VIELEN COMPUTERN DIE MITEINANDER VERBUNDEN SIND
DER URANUS IST DER SIEBENTE PLANET IN UNSEREM SONNENSYSTEM. DER URANUS IST DER SIEBENTE PLANET IN UNSEREM SONNENSYSTEM
DIE WAGEN ERHIELTEN EIN EINHEITLICHES ERSCHEINUNGSBILD IN WEISS MIT ROTEM FENSTERBAND. DIE WAGEN ERHIELTEN EIN EINHEITLICHES ERSCHEINUNGSBILD IN WEISS MIT ROTEM FENSTERBAND
SIE WAR DIE COUSINE VON CARL MARIA VON WEBER. SIE WAR DIE COUSINE VON KARL-MARIA VON WEBER

Evaluation

  1. To evaluate on mozilla-foundation/common_voice_6_0 with split test
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-german --dataset mozilla-foundation/common_voice_6_0 --config de --split test
  1. To evaluate on speech-recognition-community-v2/dev_data
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-german --dataset speech-recognition-community-v2/dev_data --config de --split validation --chunk_length_s 5.0 --stride_length_s 1.0

Citation

If you want to cite this model you can use this:

@misc{grosman2021xlsr53-large-german,
  title={Fine-tuned {XLSR}-53 large model for speech recognition in {G}erman},
  author={Grosman, Jonatas},
  howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-german}},
  year={2021}
}