Edit model card

Whisper Small Portuguese

This model is a fine-tuned version of openai/whisper-small on the mozilla-foundation/common_voice_11_0 pt dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3191
  • Wer: 14.8844
  • Cer: 5.7447

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
2.9379 0.92 500 0.4783 17.3806 7.0572
2.1727 1.84 1000 0.3721 17.2727 6.7975
1.7856 2.76 1500 0.3466 16.3790 6.4023
1.7803 3.68 2000 0.3372 15.9014 6.2089
1.8312 4.6 2500 0.3303 15.7473 6.0901
1.6403 5.52 3000 0.3256 15.9476 6.1896
1.536 6.45 3500 0.3235 15.5008 6.0928
1.4223 7.37 4000 0.3209 15.3621 6.0735
1.4652 8.29 4500 0.3209 15.2696 5.9326
1.2572 9.21 5000 0.3191 14.8844 5.7447
1.7142 10.13 5500 0.3182 15.0077 5.8469
1.4195 11.05 6000 0.3171 15.0693 5.8856
1.3965 11.97 6500 0.3167 15.0539 5.8580

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.12.1+cu116
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train jonatasgrosman/whisper-small-pt-cv11-v4

Evaluation results