|
--- |
|
license: bigscience-bloom-rail-1.0 |
|
--- |
|
|
|
# Bloom CTranslate2's model |
|
|
|
This is a collection of some of the [Bigscience Bloom](https://huggingface.co/bigscience/bloom) exported to |
|
[CTranslate2](https://github.com/OpenNMT/CTranslate2) model format. This allows to load and usage these models |
|
efficently on CPU or GPU. |
|
|
|
## Models |
|
|
|
The models have been converted to *float16* and can be load in with any other quantification method (e.g. *int 8*). |
|
|
|
|
|
| Model name | Description | |
|
| --- | --- | |
|
| [bloom-560m](https://huggingface.co/bigscience/bloom-560m) | 560M parameter model pretrained on ROOTS| |
|
| [bloom-3b](https://huggingface.co/bigscience/bloom-3b) | 3B parameter model pretrained on ROOTS |
|
| [bloomz-7b1](https://huggingface.co/bigscience/bloomz-7b1) | 7.1B parameter model finetuned on xP3| |
|
| [bloomz-7b1-mt](https://huggingface.co/bigscience/bloomz-7b1-mt) | 7.1B parameter model finetuned on xP3mt | |
|
| [mt0-xxl-mt](https://huggingface.co/bigscience/mt0-xxl-mt) | 13B parameter model finetuned on xP3| |
|
|
|
See [directories](https://huggingface.co/jordimas/bloom-ctranslate2/tree/main) for the different models available. |
|
|
|
## Simple code to use them |
|
|
|
Install dependencies: |
|
|
|
```shell |
|
pip install huggingface_hub ctranslate2 transformers torch |
|
``` |
|
|
|
Usage: |
|
|
|
```python |
|
import huggingface_hub |
|
import ctranslate2 |
|
import transformers |
|
|
|
model_name = "bloomz-7b1" |
|
prompt = "Hello, I am Joan and I am from Barcelona and" |
|
|
|
repo_id = "jordimas/bloom-ctranslate2" |
|
|
|
snapshot_folder = huggingface_hub.snapshot_download(repo_id = repo_id, allow_patterns=f"*{model_name}*") |
|
print(f"folder: {snapshot_folder}") |
|
|
|
model = f"{snapshot_folder}/{model_name}" |
|
generator = ctranslate2.Generator(model, compute_type="int8") |
|
tokenizer = transformers.AutoTokenizer.from_pretrained(model) |
|
|
|
start_tokens = tokenizer.convert_ids_to_tokens(tokenizer.encode(prompt)) |
|
results = generator.generate_batch([start_tokens], max_length=90) |
|
result = tokenizer.decode(results[0].sequences_ids[0]) |
|
print(f"Result: {result}") |
|
``` |
|
|
|
|