Edit model card

dit-base_tobacco-small_tobacco3482_hint

This model is a fine-tuned version of WinKawaks/vit-small-patch16-224 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9099
  • Accuracy: 0.85
  • Brier Loss: 0.2772
  • Nll: 1.4757
  • F1 Micro: 0.85
  • F1 Macro: 0.8366
  • Ece: 0.1392
  • Aurc: 0.0460

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 1.0 50 3.2233 0.44 0.7001 2.8339 0.44 0.3067 0.2724 0.3661
No log 2.0 100 2.3954 0.705 0.4016 1.5814 0.705 0.6657 0.2046 0.1093
No log 3.0 150 2.1938 0.735 0.3560 1.5685 0.735 0.7026 0.1879 0.0858
No log 4.0 200 2.0989 0.74 0.3533 1.5416 0.74 0.7058 0.2015 0.0896
No log 5.0 250 2.0203 0.795 0.3169 1.5407 0.795 0.7861 0.1773 0.0919
No log 6.0 300 2.1849 0.675 0.4531 1.6333 0.675 0.6701 0.2207 0.1166
No log 7.0 350 2.2223 0.745 0.4113 1.4333 0.745 0.7293 0.2045 0.0980
No log 8.0 400 2.1696 0.715 0.4221 1.6537 0.715 0.6723 0.2069 0.1040
No log 9.0 450 2.4443 0.735 0.4291 1.5392 0.735 0.7458 0.2236 0.1323
1.8536 10.0 500 2.0474 0.775 0.3649 1.6156 0.775 0.7528 0.1915 0.0844
1.8536 11.0 550 2.0046 0.81 0.3170 1.6225 0.81 0.7920 0.1547 0.0639
1.8536 12.0 600 2.4864 0.725 0.4602 1.5678 0.7250 0.7308 0.2415 0.1218
1.8536 13.0 650 1.8413 0.83 0.2698 1.6361 0.83 0.8117 0.1349 0.0674
1.8536 14.0 700 2.1304 0.815 0.3281 1.5685 0.815 0.7936 0.1715 0.0703
1.8536 15.0 750 2.5075 0.71 0.4652 1.9297 0.7100 0.6877 0.2281 0.1099
1.8536 16.0 800 2.4854 0.73 0.4462 1.5241 0.7300 0.7176 0.2282 0.1097
1.8536 17.0 850 2.1252 0.805 0.3210 1.5685 0.805 0.7907 0.1650 0.0804
1.8536 18.0 900 1.9249 0.86 0.2473 1.7031 0.8600 0.8689 0.1244 0.0528
1.8536 19.0 950 2.0943 0.835 0.2840 1.4696 0.835 0.8267 0.1439 0.0652
1.0941 20.0 1000 1.8548 0.845 0.2566 1.3059 0.845 0.8403 0.1333 0.0558
1.0941 21.0 1050 2.1487 0.805 0.3362 1.4556 0.805 0.8051 0.1665 0.0764
1.0941 22.0 1100 2.2147 0.81 0.3149 1.4884 0.81 0.8081 0.1710 0.0984
1.0941 23.0 1150 2.1111 0.84 0.2898 1.5426 0.8400 0.8410 0.1489 0.0848
1.0941 24.0 1200 2.2432 0.85 0.2884 1.7273 0.85 0.8482 0.1532 0.0765
1.0941 25.0 1250 2.3105 0.75 0.4190 1.4648 0.75 0.7396 0.2177 0.1074
1.0941 26.0 1300 2.0587 0.795 0.3444 1.6181 0.795 0.7960 0.1641 0.0799
1.0941 27.0 1350 2.4465 0.8 0.3517 2.0076 0.8000 0.7770 0.1731 0.0849
1.0941 28.0 1400 2.1351 0.825 0.3132 1.5650 0.825 0.8315 0.1631 0.0553
1.0941 29.0 1450 1.9746 0.86 0.2451 1.5908 0.8600 0.8374 0.1267 0.0537
0.9575 30.0 1500 2.0257 0.855 0.2737 1.6541 0.855 0.8121 0.1352 0.0480
0.9575 31.0 1550 1.9631 0.84 0.3037 1.7341 0.8400 0.8201 0.1515 0.0423
0.9575 32.0 1600 2.4215 0.785 0.3909 1.4042 0.785 0.7740 0.2018 0.0708
0.9575 33.0 1650 2.2159 0.795 0.3492 1.7639 0.795 0.7716 0.1721 0.0537
0.9575 34.0 1700 2.3363 0.82 0.3132 1.9858 0.82 0.7993 0.1610 0.0845
0.9575 35.0 1750 2.2187 0.84 0.2884 1.5376 0.8400 0.8182 0.1523 0.0803
0.9575 36.0 1800 2.3407 0.825 0.3206 1.8292 0.825 0.8028 0.1588 0.0719
0.9575 37.0 1850 2.4302 0.815 0.3353 1.7611 0.815 0.8091 0.1654 0.0920
0.9575 38.0 1900 2.3307 0.815 0.3269 1.8263 0.815 0.8043 0.1675 0.0876
0.9575 39.0 1950 2.2905 0.825 0.3217 1.7612 0.825 0.8116 0.1639 0.0841
0.8923 40.0 2000 2.2699 0.83 0.3225 1.7537 0.83 0.8186 0.1655 0.0792
0.8923 41.0 2050 2.2327 0.83 0.3179 1.7534 0.83 0.8186 0.1559 0.0764
0.8923 42.0 2100 2.2852 0.825 0.3230 1.6737 0.825 0.8150 0.1611 0.0760
0.8923 43.0 2150 2.2597 0.825 0.3221 1.6727 0.825 0.8147 0.1610 0.0734
0.8923 44.0 2200 2.2492 0.83 0.3176 1.6692 0.83 0.8169 0.1619 0.0720
0.8923 45.0 2250 2.2208 0.825 0.3182 1.6737 0.825 0.8124 0.1627 0.0707
0.8923 46.0 2300 2.2192 0.825 0.3209 1.6771 0.825 0.8121 0.1650 0.0712
0.8923 47.0 2350 2.2127 0.825 0.3198 1.6187 0.825 0.8124 0.1636 0.0684
0.8923 48.0 2400 2.2079 0.825 0.3208 1.6760 0.825 0.8121 0.1632 0.0707
0.8923 49.0 2450 2.1995 0.825 0.3187 1.5377 0.825 0.8124 0.1656 0.0702
0.8511 50.0 2500 2.1877 0.825 0.3158 1.6098 0.825 0.8124 0.1600 0.0690
0.8511 51.0 2550 2.1698 0.825 0.3167 1.5353 0.825 0.8124 0.1607 0.0695
0.8511 52.0 2600 2.1667 0.825 0.3133 1.5303 0.825 0.8121 0.1596 0.0680
0.8511 53.0 2650 2.1791 0.83 0.3170 1.5332 0.83 0.8149 0.1608 0.0690
0.8511 54.0 2700 2.1621 0.83 0.3148 1.5274 0.83 0.8146 0.1551 0.0693
0.8511 55.0 2750 2.1572 0.83 0.3119 1.5318 0.83 0.8149 0.1532 0.0680
0.8511 56.0 2800 2.1587 0.83 0.3100 1.5232 0.83 0.8148 0.1524 0.0712
0.8511 57.0 2850 2.1596 0.83 0.3101 1.5234 0.83 0.8146 0.1560 0.0696
0.8511 58.0 2900 2.1048 0.835 0.3047 1.5231 0.835 0.8189 0.1442 0.0676
0.8511 59.0 2950 2.4279 0.76 0.4096 1.4535 0.76 0.7538 0.2078 0.0731
0.8335 60.0 3000 2.2098 0.775 0.4036 1.4180 0.775 0.7565 0.2010 0.0870
0.8335 61.0 3050 2.0122 0.85 0.2596 1.5903 0.85 0.8272 0.1349 0.0779
0.8335 62.0 3100 2.2465 0.815 0.3311 1.6852 0.815 0.7899 0.1672 0.0658
0.8335 63.0 3150 2.1239 0.84 0.2963 1.6390 0.8400 0.8305 0.1458 0.0878
0.8335 64.0 3200 2.1931 0.82 0.3181 1.7037 0.82 0.8199 0.1654 0.0719
0.8335 65.0 3250 1.8262 0.855 0.2493 1.4845 0.855 0.8335 0.1297 0.0456
0.8335 66.0 3300 1.9467 0.845 0.2657 1.4217 0.845 0.8326 0.1361 0.0498
0.8335 67.0 3350 1.9371 0.85 0.2680 1.4175 0.85 0.8405 0.1293 0.0506
0.8335 68.0 3400 1.9172 0.85 0.2656 1.4203 0.85 0.8405 0.1331 0.0503
0.8335 69.0 3450 1.8872 0.845 0.2664 1.4327 0.845 0.8324 0.1360 0.0493
0.8281 70.0 3500 1.9045 0.845 0.2715 1.4920 0.845 0.8324 0.1377 0.0496
0.8281 71.0 3550 1.8954 0.845 0.2684 1.4919 0.845 0.8338 0.1385 0.0499
0.8281 72.0 3600 1.9222 0.85 0.2698 1.4870 0.85 0.8375 0.1356 0.0499
0.8281 73.0 3650 1.9004 0.845 0.2691 1.4912 0.845 0.8335 0.1377 0.0484
0.8281 74.0 3700 1.9168 0.85 0.2693 1.4903 0.85 0.8375 0.1338 0.0495
0.8281 75.0 3750 1.8970 0.85 0.2700 1.4908 0.85 0.8366 0.1416 0.0477
0.8281 76.0 3800 1.9089 0.85 0.2705 1.4867 0.85 0.8366 0.1373 0.0480
0.8281 77.0 3850 1.8902 0.85 0.2697 1.4896 0.85 0.8366 0.1407 0.0464
0.8281 78.0 3900 1.8889 0.85 0.2710 1.4882 0.85 0.8366 0.1421 0.0472
0.8281 79.0 3950 1.9080 0.85 0.2712 1.4876 0.85 0.8366 0.1345 0.0476
0.8047 80.0 4000 1.9011 0.85 0.2703 1.4864 0.85 0.8366 0.1373 0.0472
0.8047 81.0 4050 1.9112 0.85 0.2735 1.4867 0.85 0.8366 0.1379 0.0465
0.8047 82.0 4100 1.8850 0.85 0.2728 1.4872 0.85 0.8366 0.1419 0.0462
0.8047 83.0 4150 1.9074 0.85 0.2740 1.4862 0.85 0.8366 0.1369 0.0463
0.8047 84.0 4200 1.8804 0.85 0.2714 1.4818 0.85 0.8366 0.1376 0.0461
0.8047 85.0 4250 1.9092 0.85 0.2757 1.4825 0.85 0.8366 0.1437 0.0463
0.8047 86.0 4300 1.8985 0.85 0.2745 1.4827 0.85 0.8366 0.1390 0.0460
0.8047 87.0 4350 1.9091 0.85 0.2731 1.4808 0.85 0.8366 0.1403 0.0466
0.8047 88.0 4400 1.9037 0.85 0.2754 1.4836 0.85 0.8366 0.1383 0.0459
0.8047 89.0 4450 1.8950 0.85 0.2750 1.4798 0.85 0.8366 0.1386 0.0452
0.7971 90.0 4500 1.9115 0.85 0.2755 1.4785 0.85 0.8366 0.1387 0.0461
0.7971 91.0 4550 1.9061 0.85 0.2757 1.4791 0.85 0.8366 0.1451 0.0460
0.7971 92.0 4600 1.9058 0.85 0.2757 1.4785 0.85 0.8366 0.1392 0.0464
0.7971 93.0 4650 1.9128 0.85 0.2724 1.4769 0.85 0.8366 0.1341 0.0468
0.7971 94.0 4700 1.9115 0.85 0.2770 1.4771 0.85 0.8366 0.1388 0.0463
0.7971 95.0 4750 1.9097 0.85 0.2761 1.4761 0.85 0.8366 0.1382 0.0462
0.7971 96.0 4800 1.9025 0.85 0.2761 1.4759 0.85 0.8366 0.1385 0.0460
0.7971 97.0 4850 1.9153 0.85 0.2775 1.4757 0.85 0.8366 0.1394 0.0463
0.7971 98.0 4900 1.9084 0.85 0.2765 1.4755 0.85 0.8366 0.1388 0.0460
0.7971 99.0 4950 1.9087 0.85 0.2772 1.4757 0.85 0.8366 0.1392 0.0460
0.7931 100.0 5000 1.9099 0.85 0.2772 1.4757 0.85 0.8366 0.1392 0.0460

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.2.0.dev20231112+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
7
Safetensors
Model size
22M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jordyvl/dit-base_tobacco-small_tobacco3482_hint

Finetuned
(13)
this model