joshuapb's picture
Add new SentenceTransformer model.
4e70f9f verified
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:200
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: 'Verbalized number or word (e.g. “lowest”, “low”, “medium”, “high”,
“highest”), such as "Confidence: 60% / Medium".
Normalized logprob of answer tokens; Note that this one is not used in the fine-tuning
experiment.
Logprob of an indirect "True/False" token after the raw answer.
Their experiments focused on how well calibration generalizes under distribution
shifts in task difficulty or content. Each fine-tuning datapoint is a question,
the model’s answer (possibly incorrect), and a calibrated confidence. Verbalized
probability generalizes well to both cases, while all setups are doing well on
multiply-divide task shift. Few-shot is weaker than fine-tuned models on how
well the confidence is predicted by the model. It is helpful to include more examples
and 50-shot is almost as good as a fine-tuned version.'
sentences:
- What is the relationship between the calibration of AI models and the effectiveness
of verbalized probabilities when applied to tasks of varying difficulty levels?
- In what ways does the F1 @ K metric contribute to evaluating the factual accuracy
and comprehensiveness of outputs generated by long-form language models?
- What impact does the implementation of a pretrained query-document relevance model
have on the process of document selection in research methodologies?
- source_sentence: 'Fig. 4. Overview of SAFE for factuality evaluation of long-form
LLM generation. (Image source: Wei et al. 2024)
The SAFE evaluation metric is F1 @ K. The motivation is that model response for
long-form factuality should ideally hit both precision and recall, as the response
should be both
factual : measured by precision, the percentage of supported facts among all facts
in the entire response.
long : measured by recall, the percentage of provided facts among all relevant
facts that should appear in the response. Therefore we want to consider the number
of supported facts up to $K$.
Given the model response $y$, the metric F1 @ K is defined as:'
sentences:
- What methodologies does the agreement model employ to identify discrepancies between
the original and revised text, and how do these methodologies impact the overall
editing workflow?
- In what ways does the SAFE evaluation metric achieve a harmonious equilibrium
between precision and recall in the context of evaluating the factual accuracy
of long-form outputs generated by large language models?
- In what ways does the inherently adversarial structure of TruthfulQA inquiries
facilitate the detection of prevalent fallacies in human cognitive processes,
and what implications does this have for understanding the constraints of expansive
language models?
- source_sentence: 'Non-context LLM: Prompt LLM directly with <atomic-fact> True or
False? without additional context.
Retrieval→LLM: Prompt with $k$ related passages retrieved from the knowledge source
as context.
Nonparametric probability (NP)): Compute the average likelihood of tokens in the
atomic fact by a masked LM and use that to make a prediction.
Retrieval→LLM + NP: Ensemble of two methods.
Some interesting observations on model hallucination behavior:
Error rates are higher for rarer entities in the task of biography generation.
Error rates are higher for facts mentioned later in the generation.
Using retrieval to ground the model generation significantly helps reduce hallucination.'
sentences:
- In what ways does the Rethinking with Retrieval (RR) methodology leverage Chain-of-Thought
(CoT) prompting to enhance the efficacy of external knowledge retrieval, and what
implications does this have for the precision of predictive outcomes generated
by models?
- In what ways does the retrieval of related passages contribute to minimizing hallucinations
in large language models, and what specific techniques can be employed to evaluate
the impact of this approach?
- What are the benefits of using retrieval methods in biography generation to minimize
inaccuracies, especially when compared to traditional prompting techniques that
lack context?
- source_sentence: 'Yin et al. (2023) studies the concept of self-knowledge, referring
to whether language models know what they know or don’t know.
SelfAware, containing 1,032 unanswerable questions across five categories and
2,337 answerable questions. Unanswerable questions are sourced from online forums
with human annotations while answerable questions are sourced from SQuAD, HotpotQA
and TriviaQA based on text similarity with unanswerable questions. A question
may be unanswerable due to various reasons, such as no scientific consensus, imaginations
of the future, completely subjective, philosophical reasons that may yield multiple
responses, etc. Considering separating answerable vs unanswerable questions as
a binary classification task, we can measure F1-score or accuracy and the experiments
showed that larger models can do better at this task.'
sentences:
- What is the relationship between model size and performance metrics, such as F1-score
and accuracy, in the context of classifying questions into answerable and unanswerable
categories?
- How does the introduction of stochastic perturbations in synthetic training data
contribute to the enhancement of editor model efficacy within LangChain frameworks?
- How do the various output values linked to reflection tokens in the Self-RAG framework
impact the generation process, and why are they important?
- source_sentence: 'Fig. 1. Knowledge categorization of close-book QA examples based
on how likely the model outputs correct answers. (Image source: Gekhman et al.
2024)
Some interesting observations of the experiments, where dev set accuracy is considered
a proxy for hallucinations.
Unknown examples are fitted substantially slower than Known.
The best dev performance is obtained when the LLM fits the majority of the Known
training examples but only a few of the Unknown ones. The model starts to hallucinate
when it learns most of the Unknown examples.
Among Known examples, MaybeKnown cases result in better overall performance, more
essential than HighlyKnown ones.'
sentences:
- In what ways does the fitting speed of examples that are not previously encountered
differ from that of familiar examples, and how does this variation influence the
overall accuracy of the model on the development set?
- What role do reflection tokens play in enhancing the efficiency of document retrieval
and generation within the Self-RAG framework?
- How do the results presented by Gekhman et al. in their 2024 study inform our
understanding of the reliability metrics associated with large language models
(LLMs) when subjected to fine-tuning with novel datasets?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.8802083333333334
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.96875
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.984375
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9947916666666666
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8802083333333334
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3229166666666667
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.196875
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09947916666666667
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8802083333333334
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.96875
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.984375
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9947916666666666
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9433275174124347
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9261284722222224
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9264025950292397
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.8697916666666666
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9739583333333334
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9739583333333334
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9947916666666666
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8697916666666666
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3246527777777778
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1947916666666666
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09947916666666667
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8697916666666666
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9739583333333334
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9739583333333334
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9947916666666666
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.939968526552219
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9216269841269841
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9220610119047619
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.8697916666666666
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9739583333333334
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.984375
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8697916666666666
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3246527777777778
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.196875
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8697916666666666
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9739583333333334
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.984375
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9419747509776967
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.922676917989418
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.922676917989418
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.8541666666666666
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9583333333333334
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.96875
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9947916666666666
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8541666666666666
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3194444444444445
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19374999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09947916666666667
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8541666666666666
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9583333333333334
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.96875
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9947916666666666
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9306358745697197
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9094328703703702
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9098668981481483
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.7916666666666666
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.953125
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9739583333333334
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9895833333333334
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7916666666666666
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3177083333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1947916666666666
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09895833333333333
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7916666666666666
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.953125
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9739583333333334
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9895833333333334
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9003914274568845
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8705935846560847
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8713150853775854
name: Cosine Map@100
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("joshuapb/fine-tuned-matryoshka-200")
# Run inference
sentences = [
'Fig. 1. Knowledge categorization of close-book QA examples based on how likely the model outputs correct answers. (Image source: Gekhman et al. 2024)\nSome interesting observations of the experiments, where dev set accuracy is considered a proxy for hallucinations.\n\nUnknown examples are fitted substantially slower than Known.\nThe best dev performance is obtained when the LLM fits the majority of the Known training examples but only a few of the Unknown ones. The model starts to hallucinate when it learns most of the Unknown examples.\nAmong Known examples, MaybeKnown cases result in better overall performance, more essential than HighlyKnown ones.',
'In what ways does the fitting speed of examples that are not previously encountered differ from that of familiar examples, and how does this variation influence the overall accuracy of the model on the development set?',
'How do the results presented by Gekhman et al. in their 2024 study inform our understanding of the reliability metrics associated with large language models (LLMs) when subjected to fine-tuning with novel datasets?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8802 |
| cosine_accuracy@3 | 0.9688 |
| cosine_accuracy@5 | 0.9844 |
| cosine_accuracy@10 | 0.9948 |
| cosine_precision@1 | 0.8802 |
| cosine_precision@3 | 0.3229 |
| cosine_precision@5 | 0.1969 |
| cosine_precision@10 | 0.0995 |
| cosine_recall@1 | 0.8802 |
| cosine_recall@3 | 0.9688 |
| cosine_recall@5 | 0.9844 |
| cosine_recall@10 | 0.9948 |
| cosine_ndcg@10 | 0.9433 |
| cosine_mrr@10 | 0.9261 |
| **cosine_map@100** | **0.9264** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8698 |
| cosine_accuracy@3 | 0.974 |
| cosine_accuracy@5 | 0.974 |
| cosine_accuracy@10 | 0.9948 |
| cosine_precision@1 | 0.8698 |
| cosine_precision@3 | 0.3247 |
| cosine_precision@5 | 0.1948 |
| cosine_precision@10 | 0.0995 |
| cosine_recall@1 | 0.8698 |
| cosine_recall@3 | 0.974 |
| cosine_recall@5 | 0.974 |
| cosine_recall@10 | 0.9948 |
| cosine_ndcg@10 | 0.94 |
| cosine_mrr@10 | 0.9216 |
| **cosine_map@100** | **0.9221** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8698 |
| cosine_accuracy@3 | 0.974 |
| cosine_accuracy@5 | 0.9844 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.8698 |
| cosine_precision@3 | 0.3247 |
| cosine_precision@5 | 0.1969 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.8698 |
| cosine_recall@3 | 0.974 |
| cosine_recall@5 | 0.9844 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.942 |
| cosine_mrr@10 | 0.9227 |
| **cosine_map@100** | **0.9227** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8542 |
| cosine_accuracy@3 | 0.9583 |
| cosine_accuracy@5 | 0.9688 |
| cosine_accuracy@10 | 0.9948 |
| cosine_precision@1 | 0.8542 |
| cosine_precision@3 | 0.3194 |
| cosine_precision@5 | 0.1937 |
| cosine_precision@10 | 0.0995 |
| cosine_recall@1 | 0.8542 |
| cosine_recall@3 | 0.9583 |
| cosine_recall@5 | 0.9688 |
| cosine_recall@10 | 0.9948 |
| cosine_ndcg@10 | 0.9306 |
| cosine_mrr@10 | 0.9094 |
| **cosine_map@100** | **0.9099** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7917 |
| cosine_accuracy@3 | 0.9531 |
| cosine_accuracy@5 | 0.974 |
| cosine_accuracy@10 | 0.9896 |
| cosine_precision@1 | 0.7917 |
| cosine_precision@3 | 0.3177 |
| cosine_precision@5 | 0.1948 |
| cosine_precision@10 | 0.099 |
| cosine_recall@1 | 0.7917 |
| cosine_recall@3 | 0.9531 |
| cosine_recall@5 | 0.974 |
| cosine_recall@10 | 0.9896 |
| cosine_ndcg@10 | 0.9004 |
| cosine_mrr@10 | 0.8706 |
| **cosine_map@100** | **0.8713** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:-------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.2 | 5 | 5.2225 | - | - | - | - | - |
| 0.4 | 10 | 4.956 | - | - | - | - | - |
| 0.6 | 15 | 3.6388 | - | - | - | - | - |
| 0.8 | 20 | 3.1957 | - | - | - | - | - |
| 1.0 | 25 | 2.6928 | 0.8661 | 0.8770 | 0.8754 | 0.8312 | 0.8871 |
| 1.2 | 30 | 2.5565 | - | - | - | - | - |
| 1.4 | 35 | 1.5885 | - | - | - | - | - |
| 1.6 | 40 | 2.1406 | - | - | - | - | - |
| 1.8 | 45 | 2.193 | - | - | - | - | - |
| 2.0 | 50 | 1.326 | 0.8944 | 0.9110 | 0.9028 | 0.8615 | 0.9037 |
| 2.2 | 55 | 2.6832 | - | - | - | - | - |
| 2.4 | 60 | 1.0584 | - | - | - | - | - |
| 2.6 | 65 | 0.8853 | - | - | - | - | - |
| 2.8 | 70 | 1.7129 | - | - | - | - | - |
| 3.0 | 75 | 2.1856 | 0.9106 | 0.9293 | 0.9075 | 0.8778 | 0.9266 |
| 3.2 | 80 | 1.7658 | - | - | - | - | - |
| 3.4 | 85 | 1.9783 | - | - | - | - | - |
| 3.6 | 90 | 1.9583 | - | - | - | - | - |
| 3.8 | 95 | 1.2396 | - | - | - | - | - |
| 4.0 | 100 | 1.1901 | 0.9073 | 0.9253 | 0.9151 | 0.8750 | 0.9312 |
| 4.2 | 105 | 2.6547 | - | - | - | - | - |
| 4.4 | 110 | 1.3485 | - | - | - | - | - |
| 4.6 | 115 | 1.0767 | - | - | - | - | - |
| 4.8 | 120 | 0.6663 | - | - | - | - | - |
| **5.0** | **125** | **1.3869** | **0.9099** | **0.9227** | **0.9221** | **0.8713** | **0.9264** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->