jpino's picture
update model card README.md
9d1710f
|
raw
history blame
2.17 kB
metadata
license: cc-by-nc-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - cord-layoutlmv
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-cord_100
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: cord-layoutlmv
          type: cord-layoutlmv
          config: default
          split: train
          args: default
        metrics:
          - name: Precision
            type: precision
            value: 0.8426395939086294
          - name: Recall
            type: recall
            value: 0.8877005347593583
          - name: F1
            type: f1
            value: 0.8645833333333333
          - name: Accuracy
            type: accuracy
            value: 0.9807981927710844

layoutlmv3-finetuned-cord_100

This model is a fine-tuned version of microsoft/layoutlmv3-base on the cord-layoutlmv dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1563
  • Precision: 0.8426
  • Recall: 0.8877
  • F1: 0.8646
  • Accuracy: 0.9808

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 27.78 250 0.2591 0.7179 0.7487 0.7330 0.9529
0.4762 55.56 500 0.1563 0.8426 0.8877 0.8646 0.9808

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2