whisper-large-v2-multilingual
This model is a fine-tuned version of openai/whisper-large-v2 on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 0.3502
- Wer Eng: 0.01
- Wer Lug: 0.106
- Wer Ach: 0.241
- Wer Lgg: 0.361
- Wer Teo: 0.327
- Wer Nyn: 0.387
- Wer Mean: 0.239
- Cer Eng: 0.004
- Cer Lug: 0.029
- Cer Ach: 0.064
- Cer Lgg: 0.118
- Cer Teo: 0.145
- Cer Nyn: 0.125
- Cer Mean: 0.081
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 2000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer Eng | Wer Lug | Wer Ach | Wer Lgg | Wer Teo | Wer Nyn | Wer Mean | Cer Eng | Cer Lug | Cer Ach | Cer Lgg | Cer Teo | Cer Nyn | Cer Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.0754 | 0.1 | 200 | 0.6042 | 0.031 | 0.267 | 0.428 | 0.481 | 0.615 | 0.712 | 0.422 | 0.017 | 0.053 | 0.121 | 0.147 | 0.242 | 0.201 | 0.13 |
0.5269 | 1.0001 | 400 | 0.4731 | 0.018 | 0.176 | 0.34 | 0.422 | 0.45 | 0.531 | 0.323 | 0.008 | 0.04 | 0.093 | 0.126 | 0.174 | 0.156 | 0.099 |
0.4203 | 1.1001 | 600 | 0.4230 | 0.018 | 0.199 | 0.319 | 0.416 | 0.418 | 0.482 | 0.309 | 0.007 | 0.06 | 0.094 | 0.122 | 0.163 | 0.146 | 0.099 |
0.3851 | 2.0002 | 800 | 0.3871 | 0.014 | 0.116 | 0.271 | 0.374 | 0.443 | 0.454 | 0.279 | 0.006 | 0.03 | 0.073 | 0.11 | 0.19 | 0.137 | 0.091 |
0.3241 | 2.1002 | 1000 | 0.3716 | 0.015 | 0.12 | 0.271 | 0.392 | 0.397 | 0.416 | 0.269 | 0.006 | 0.03 | 0.077 | 0.133 | 0.166 | 0.127 | 0.09 |
0.3161 | 3.0004 | 1200 | 0.3584 | 0.021 | 0.121 | 0.269 | 0.429 | 0.36 | 0.38 | 0.263 | 0.008 | 0.032 | 0.071 | 0.154 | 0.16 | 0.121 | 0.091 |
0.2764 | 3.1004 | 1400 | 0.3546 | 0.012 | 0.116 | 0.254 | 0.376 | 0.348 | 0.403 | 0.251 | 0.004 | 0.03 | 0.073 | 0.123 | 0.155 | 0.125 | 0.085 |
0.2692 | 4.0005 | 1600 | 0.3487 | 0.011 | 0.107 | 0.248 | 0.352 | 0.336 | 0.377 | 0.238 | 0.004 | 0.029 | 0.067 | 0.102 | 0.15 | 0.123 | 0.079 |
0.2427 | 4.1005 | 1800 | 0.3535 | 0.01 | 0.113 | 0.24 | 0.384 | 0.329 | 0.387 | 0.244 | 0.004 | 0.03 | 0.066 | 0.122 | 0.145 | 0.125 | 0.082 |
0.2413 | 5.0006 | 2000 | 0.3502 | 0.01 | 0.106 | 0.241 | 0.361 | 0.327 | 0.387 | 0.239 | 0.004 | 0.029 | 0.064 | 0.118 | 0.145 | 0.125 | 0.081 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.2.1
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 656
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for jq/whisper-large-v2-multilingual
Base model
openai/whisper-large-v2