jstoone's picture
End of training
98b4be0
metadata
license: bsd-3-clause
base_model: MIT/ast-finetuned-audioset-10-10-0.4593
tags:
  - generated_from_trainer
datasets:
  - Nooon/Donate_a_cry
metrics:
  - accuracy
model-index:
  - name: ast-finetuned-cry
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: DonateACry
          type: Nooon/Donate_a_cry
          config: train
          split: train
          args: train
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5454545454545454

ast-finetuned-cry

This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on the DonateACry dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6404
  • Accuracy: 0.5455

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.6297 1.0 11 1.6891 0.3636
1.1137 2.0 22 1.3156 0.4545
0.5047 3.0 33 1.3955 0.4545
0.2062 4.0 44 1.4002 0.6364
0.0613 5.0 55 1.6693 0.5455
0.0142 6.0 66 1.3452 0.6364
0.0053 7.0 77 1.6914 0.5455
0.0038 8.0 88 1.6689 0.5455
0.0027 9.0 99 1.6357 0.5455
0.002 10.0 110 1.6404 0.5455

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1