whisper-tiny-en / README.md
jstoone's picture
πŸ‘·β€β™€οΈ Fix WER display value to be zero-based percentage.
95628b8
metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - PolyAI/minds14
metrics:
  - wer
model-index:
  - name: whisper-tiny-en
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: PolyAI/minds14
          type: PolyAI/minds14
          config: en-US
          split: train
          args: en-US
        metrics:
          - name: Wer
            type: wer
            value: 0.35723514211886304

whisper-tiny-en

This model is a fine-tuned version of openai/whisper-tiny on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9035
  • Wer Ortho: 0.354643
  • Wer: 0.357235

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.0005 35.71 500 0.7515 36.1373 36.4341
0.0002 71.43 1000 0.8095 36.4065 36.5633
0.0001 107.14 1500 0.8421 36.4738 36.6925
0.0001 142.86 2000 0.8636 35.4643 35.5943
0.0001 178.57 2500 0.8822 35.6662 35.7235
0.0 214.29 3000 0.8931 35.4643 35.7235
0.0 250.0 3500 0.9013 35.4643 35.7235
0.0 285.71 4000 0.9035 35.4643 35.7235

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3