Edit model card

SciPhi-Mistral-7B-32k-sliced

SciPhi-Mistral-7B-32k-sliced is a merge of the following models using LazyMergekit:

🧩 Configuration

slices:
  - sources:
      - model: SciPhi/SciPhi-Mistral-7B-32k
        layer_range: [0, 12]
  - sources:
      - model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
        layer_range: [0, 12]
  - sources:
      - model: teknium/OpenHermes-2.5-Mistral-7B
        layer_range: [0, 12]

merge_method: slerp
base_model: teknium/OpenHermes-2.5-Mistral-7B
parameters:
  t:
  - filter: self_attn
    value: [0, 0.5, 0.3, 0.7, 1]
  - filter: mlp
    value: [1, 0.5, 0.7, 0.3, 0]
  - value: 0.5
dtype: float16
tokenizer_source: base

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "jtatman/SciPhi-Mistral-7B-32k-sliced"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
12
Safetensors
Model size
8.11B params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jtatman/SciPhi-Mistral-7B-32k-sliced

Finetuned
(1)
this model

Collection including jtatman/SciPhi-Mistral-7B-32k-sliced