File size: 3,743 Bytes
d5a99cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1e5b17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
---
language: en
tags:
- mistral
- gguf
- mistral-trimegistrus-7b
license:
- apache-2.0
datasets:
- pharaouk/dharma-1/dharma_1_mini.json
metrics:
- adam_beta1=0.9
- adam_beta2=0.999
- adam_epsilon=0.00000001
- add_cross_attention=false
- loss=1.4308836460113523
- runtime=11.3829
- samples_per_second=8.522
- steps_per_second=2.196

---

# Model Card for Model mistral-trimegistus-7b-gguf

This model repo holds gguf quantized versions of ["teknium/Mistral-Trismegistus-7B"] (https://huggingface.co/teknium/Mistral-Trismegistus-7B).

## Model Details

Transcendence is All You Need! Mistral Trismegistus is a model made for people interested in the esoteric, occult, and spiritual. 

### Model Description


- The First Powerful Occult Expert Model: ~10,000 high quality, deep, rich, instructions on the occult, esoteric, and spiritual.

- Fast: Trained on Mistral, a state of the art 7B parameter model, you can run this model FAST on even a cpu.
- Not a positivity-nazi: This model was trained on all forms of esoteric tasks and knowledge, and is not burdened by the flowery nature of many other models, who chose positivity over creativity.


### Model Sources [optional]

All credits go [here](https://huggingface.co/teknium/Mistral-Trismegistus-7B)

## Usage

USER: <prompt>
ASSISTANT:

OR

<system message>
USER: <prompt>
ASSISTANT:


## Training Details

#### Training Hyperparameters

 "_name_or_path": {
    "desc": null,
    "value": "mistralai/Mistral-7B-v0.1"
  },
  "architectures": {
    "desc": null,
    "value": [
      "MistralForCausalLM"
    ]
  },
  "bad_words_ids": {
    "desc": null,
    "value": null
  },
  "bench_dataset": {
    "desc": null,
    "value": "pharaouk/dharma-1/dharma_1_mini.json"
  },
  "learning_rate": {
    "desc": null,
    "value": 0.0004
  },
  "max_grad_norm": {
    "desc": null,
    "value": 1
  },
  "fp16_opt_level": {
    "desc": null,
    "value": "O1"
  },
  "length_penalty": {
    "desc": null,
    "value": 1
  },
  "max_seq_length": {
    "desc": null,
    "value": 4096
  },
  "sliding_window": {
    "desc": null,
    "value": 4096
  },
  "num_beam_groups": {
    "desc": null,
    "value": 1
  },
  "initializer_range": {
    "desc": null,
    "value": 0.02
  },
  "intermediate_size": {
    "desc": null,
    "value": 14336
  },
  "lr_scheduler_type": {
    "desc": null,
    "value": "cosine"
  },
  "num_hidden_layers": {
    "desc": null,
    "value": 32
  },
  "repetition_penalty": {
    "desc": null,
    "value": 1
  },
  "evaluation_strategy": {
    "desc": null,
    "value": "steps"
  },
  "num_attention_heads": {
    "desc": null,
    "value": 32
  },
  "num_key_value_heads": {
    "desc": null,
    "value": 8
  },
  "quantization_config": {
    "desc": null,
    "value": {
      "load_in_4bit": true,
      "load_in_8bit": false,
      "quant_method": "QuantizationMethod.BITS_AND_BYTES",
      "llm_int8_threshold": 6,
      "bnb_4bit_quant_type": "nf4",
      "llm_int8_skip_modules": null,
      "bnb_4bit_compute_dtype": "bfloat16",
      "llm_int8_has_fp16_weight": false,
      "bnb_4bit_use_double_quant": true,
      "llm_int8_enable_fp32_cpu_offload": false
    }
  }


#### Speeds, Sizes, Times 

{
  "_step": 9589,
  "_wandb.runtime": 12960,
  "_runtime": 12960.192620515823,
  "eval/loss": 1.4308836460113523,
  "train/train_steps_per_second": 0.739,
  "train/train_samples_per_second": 2.956,
  "train/loss": 0.3396,
  "train/epoch": 4,
  "train/total_flos": 1757020072120942600,
  "train/train_loss": 0.8929485179171377,
  "train/learning_rate": 0,
  "eval/steps_per_second": 2.196,
  "_timestamp": 1696542775.2713604,
  "eval/runtime": 11.3829,
  "train/global_step": 9584,
  "train/train_runtime": 12962.7813,
  "eval/samples_per_second": 8.522
}