metadata
language:
- es
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
base_model: openai/whisper-medium
model-index:
- name: Whisper Medium Es - Juan Carlos Piñeros
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: es
split: test
args: es
metrics:
- type: wer
value: 5.421819787985865
name: Wer
Whisper Medium Es - Juan Carlos Piñeros
This model is a fine-tuned version of openai/whisper-medium on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1672
- Wer: 5.4218
Using the script provided in the Whisper Sprint (Dec. 2022) the models achieves these results on the evaluation sets (WER):
- google/fleurs: 5.88
- mozilla-foundation/common_voice_11_0: XXX
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 3000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0792 | 0.33 | 1000 | 0.1904 | 6.0493 |
0.0851 | 0.67 | 2000 | 0.1757 | 5.9558 |
0.0946 | 1.0 | 3000 | 0.1672 | 5.4218 |
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2