text2sql / README.md
juanfra218's picture
Update README.md
e1364fa verified
|
raw
history blame
2.87 kB
---
license: mit
datasets:
- b-mc2/sql-create-context
- gretelai/synthetic_text_to_sql
language:
- en
base_model: google-t5/t5-base
metrics:
- exact_match
model-index:
- name: juanfra218/text2sql
results:
- task:
type: text-to-sql
metrics:
- name: exact_match
type: exact_match
value: 0.4322
---
# Fine-Tuned Google T5 Model for Text to SQL Translation
A fine-tuned version of the Google T5 model, trained for the task of translating natural language queries into SQL statements.
## Model Details
- **Architecture**: Google T5 Base (Text-to-Text Transfer Transformer)
- **Task**: Text to SQL Translation
- **Fine-Tuning Datasets**:
- [sql-create-context Dataset](https://huggingface.co/datasets/b-mc2/sql-create-context)
- [Synthetic-Text-To-SQL Dataset](https://huggingface.co/datasets/gretelai/synthetic-text-to-sql)
## Ongoing Work
Currently working to implement PICARD (Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models) to improve the results of this model. More details can be found in the original [PICARD paper](https://arxiv.org/abs/2109.05093).
## Results
Results are currently being evaluated and will be posted here soon.
## Usage
```
import torch
from transformers import AutoTokenizer, T5ForConditionalGeneration
# Load the tokenizer and model
model_path = 'text2sql_model_path'
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = T5ForConditionalGeneration.from_pretrained(model_path)
# Function to generate SQL queries
def generate_sql(prompt, schema):
input_text = "translate English to SQL: " + prompt + " " + schema
inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True, padding="max_length")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
inputs = {key: value.to(device) for key, value in inputs.items()}
max_output_length = 1024
outputs = model.generate(**inputs, max_length=max_output_length)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Interactive loop
print("Enter 'quit' to exit.")
while True:
prompt = input("Insert prompt: ")
schema = input("Insert schema: ")
if prompt.lower() == 'quit':
break
sql_query = generate_sql(prompt, schema)
print(f"Generated SQL query: {sql_query}")
print()
```
## Files
- `optimizer.pt`: State of the optimizer.
- `training_args.bin`: Training arguments and hyperparameters.
- `tokenizer.json`: Tokenizer vocabulary and settings.
- `spiece.model`: SentencePiece model file.
- `special_tokens_map.json`: Special tokens mapping.
- `tokenizer_config.json`: Tokenizer configuration settings.
- `model.safetensors`: Trained model weights.
- `generation_config.json`: Configuration for text generation.
- `config.json`: Model architecture configuration.