phi2-viggo-finetune / README.md
jucamohedano's picture
jucamohedano
4dc2f45 verified
|
raw
history blame
2.4 kB
metadata
license: mit
library_name: peft
tags:
  - generated_from_trainer
datasets:
  - viggo
base_model: microsoft/phi-2
model-index:
  - name: phi2-viggo-finetune
    results: []

phi2-viggo-finetune

This model is a fine-tuned version of microsoft/phi-2 on the viggo dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2331

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.5e-05
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss
1.9356 0.04 50 1.4822
0.7214 0.08 100 0.5014
0.4192 0.12 150 0.3561
0.3546 0.16 200 0.3135
0.3119 0.2 250 0.2935
0.2926 0.24 300 0.2799
0.283 0.27 350 0.2711
0.2731 0.31 400 0.2629
0.2637 0.35 450 0.2583
0.2693 0.39 500 0.2518
0.2634 0.43 550 0.2478
0.2652 0.47 600 0.2453
0.2514 0.51 650 0.2429
0.2588 0.55 700 0.2394
0.2321 0.59 750 0.2381
0.2348 0.63 800 0.2357
0.2414 0.67 850 0.2355
0.2455 0.71 900 0.2337
0.2442 0.74 950 0.2331
0.2192 0.78 1000 0.2331

Framework versions

  • PEFT 0.7.2.dev0
  • Transformers 4.38.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0