Edit model card

BC5CDR_PubMedBERT_NER

This model is a fine-tuned version of microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0783

  • Seqeval classification report: precision recall f1-score support

    Chemical 0.99 0.98 0.98 103336 Disease 0.76 0.86 0.81 3447

    micro avg 0.98 0.98 0.98 106783 macro avg 0.87 0.92 0.89 106783

weighted avg 0.98 0.98 0.98 106783

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Seqeval classification report
No log 1.0 143 0.0952 precision recall f1-score support
Chemical       0.99      0.97      0.98    103336
 Disease       0.68      0.88      0.76      3447

micro avg 0.97 0.97 0.97 106783 macro avg 0.83 0.92 0.87 106783 weighted avg 0.98 0.97 0.97 106783 | | No log | 2.0 | 286 | 0.0804 | precision recall f1-score support

Chemical       0.99      0.98      0.98    103336
 Disease       0.75      0.86      0.80      3447

micro avg 0.98 0.97 0.97 106783 macro avg 0.87 0.92 0.89 106783 weighted avg 0.98 0.97 0.98 106783 | | No log | 3.0 | 429 | 0.0783 | precision recall f1-score support

Chemical       0.99      0.98      0.98    103336
 Disease       0.76      0.86      0.81      3447

micro avg 0.98 0.98 0.98 106783 macro avg 0.87 0.92 0.89 106783 weighted avg 0.98 0.98 0.98 106783 |

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
6
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for judithrosell/BC5CDR_PubMedBERT_NER