|
--- |
|
license: mit |
|
base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: BioNLP13CG_PubMedBERT_NER |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# BioNLP13CG_PubMedBERT_NER |
|
|
|
This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2066 |
|
- Seqeval classification report: precision recall f1-score support |
|
|
|
Amino_acid 0.78 0.81 0.79 301 |
|
Anatomical_system 0.00 0.00 0.00 3 |
|
Cancer 0.00 0.00 0.00 37 |
|
Cell 0.79 0.85 0.82 446 |
|
Cellular_component 0.00 0.00 0.00 19 |
|
Developing_anatomical_structure 0.55 0.78 0.65 399 |
|
Gene_or_gene_product 0.68 0.41 0.51 128 |
|
Immaterial_anatomical_entity 0.00 0.00 0.00 45 |
|
Multi-tissue_structure 0.25 0.02 0.04 98 |
|
Organ 0.00 0.00 0.00 19 |
|
Organism 0.90 0.93 0.92 1108 |
|
Organism_subdivision 0.71 0.12 0.21 120 |
|
Organism_substance 0.62 0.59 0.60 128 |
|
Pathological_formation 0.00 0.00 0.00 41 |
|
Simple_chemical 0.87 0.86 0.86 4397 |
|
Tissue 0.90 0.93 0.91 1790 |
|
|
|
micro avg 0.84 0.83 0.84 9079 |
|
macro avg 0.44 0.39 0.39 9079 |
|
weighted avg 0.83 0.83 0.82 9079 |
|
|
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Seqeval classification report | |
|
|:-------------:|:-----:|:----:|:---------------:|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| |
|
| No log | 0.99 | 95 | 0.3390 | precision recall f1-score support |
|
|
|
Amino_acid 0.81 0.10 0.18 301 |
|
Anatomical_system 0.00 0.00 0.00 3 |
|
Cancer 0.00 0.00 0.00 37 |
|
Cell 0.82 0.76 0.79 446 |
|
Cellular_component 0.00 0.00 0.00 19 |
|
Developing_anatomical_structure 0.90 0.07 0.13 399 |
|
Gene_or_gene_product 0.00 0.00 0.00 128 |
|
Immaterial_anatomical_entity 0.00 0.00 0.00 45 |
|
Multi-tissue_structure 0.00 0.00 0.00 98 |
|
Organ 0.00 0.00 0.00 19 |
|
Organism 0.64 0.86 0.73 1108 |
|
Organism_subdivision 0.00 0.00 0.00 120 |
|
Organism_substance 0.00 0.00 0.00 128 |
|
Pathological_formation 0.00 0.00 0.00 41 |
|
Simple_chemical 0.83 0.79 0.81 4397 |
|
Tissue 0.74 0.91 0.82 1790 |
|
|
|
micro avg 0.77 0.71 0.74 9079 |
|
macro avg 0.30 0.22 0.22 9079 |
|
weighted avg 0.73 0.71 0.69 9079 |
|
| |
|
| No log | 2.0 | 191 | 0.2209 | precision recall f1-score support |
|
|
|
Amino_acid 0.76 0.75 0.76 301 |
|
Anatomical_system 0.00 0.00 0.00 3 |
|
Cancer 0.00 0.00 0.00 37 |
|
Cell 0.78 0.87 0.82 446 |
|
Cellular_component 0.00 0.00 0.00 19 |
|
Developing_anatomical_structure 0.52 0.75 0.61 399 |
|
Gene_or_gene_product 0.65 0.24 0.35 128 |
|
Immaterial_anatomical_entity 0.00 0.00 0.00 45 |
|
Multi-tissue_structure 0.00 0.00 0.00 98 |
|
Organ 0.00 0.00 0.00 19 |
|
Organism 0.89 0.92 0.91 1108 |
|
Organism_subdivision 0.50 0.05 0.09 120 |
|
Organism_substance 0.61 0.52 0.56 128 |
|
Pathological_formation 0.00 0.00 0.00 41 |
|
Simple_chemical 0.86 0.86 0.86 4397 |
|
Tissue 0.87 0.93 0.90 1790 |
|
|
|
micro avg 0.83 0.82 0.83 9079 |
|
macro avg 0.40 0.37 0.37 9079 |
|
weighted avg 0.81 0.82 0.81 9079 |
|
| |
|
| No log | 2.98 | 285 | 0.2066 | precision recall f1-score support |
|
|
|
Amino_acid 0.78 0.81 0.79 301 |
|
Anatomical_system 0.00 0.00 0.00 3 |
|
Cancer 0.00 0.00 0.00 37 |
|
Cell 0.79 0.85 0.82 446 |
|
Cellular_component 0.00 0.00 0.00 19 |
|
Developing_anatomical_structure 0.55 0.78 0.65 399 |
|
Gene_or_gene_product 0.68 0.41 0.51 128 |
|
Immaterial_anatomical_entity 0.00 0.00 0.00 45 |
|
Multi-tissue_structure 0.25 0.02 0.04 98 |
|
Organ 0.00 0.00 0.00 19 |
|
Organism 0.90 0.93 0.92 1108 |
|
Organism_subdivision 0.71 0.12 0.21 120 |
|
Organism_substance 0.62 0.59 0.60 128 |
|
Pathological_formation 0.00 0.00 0.00 41 |
|
Simple_chemical 0.87 0.86 0.86 4397 |
|
Tissue 0.90 0.93 0.91 1790 |
|
|
|
micro avg 0.84 0.83 0.84 9079 |
|
macro avg 0.44 0.39 0.39 9079 |
|
weighted avg 0.83 0.83 0.82 9079 |
|
| |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|