File size: 4,880 Bytes
66eefc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
---
license: mit
base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
tags:
- generated_from_trainer
model-index:
- name: CRAFT_PubMedBERT_NER
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# CRAFT_PubMedBERT_NER
This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1043
- Seqeval classification report: precision recall f1-score support
CHEBI 0.71 0.73 0.72 616
CL 0.85 0.89 0.87 1740
GGP 0.84 0.76 0.80 611
GO 0.89 0.90 0.90 3810
SO 0.81 0.83 0.82 8854
Taxon 0.58 0.60 0.59 284
micro avg 0.82 0.84 0.83 15915
macro avg 0.78 0.79 0.78 15915
weighted avg 0.82 0.84 0.83 15915
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Seqeval classification report |
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| No log | 1.0 | 347 | 0.1260 | precision recall f1-score support
CHEBI 0.66 0.61 0.63 616
CL 0.81 0.86 0.83 1740
GGP 0.74 0.54 0.63 611
GO 0.86 0.89 0.87 3810
SO 0.73 0.78 0.76 8854
Taxon 0.47 0.57 0.52 284
micro avg 0.76 0.80 0.78 15915
macro avg 0.71 0.71 0.71 15915
weighted avg 0.76 0.80 0.78 15915
|
| 0.182 | 2.0 | 695 | 0.1089 | precision recall f1-score support
CHEBI 0.69 0.74 0.71 616
CL 0.84 0.88 0.86 1740
GGP 0.83 0.74 0.78 611
GO 0.88 0.90 0.89 3810
SO 0.79 0.82 0.81 8854
Taxon 0.57 0.60 0.58 284
micro avg 0.81 0.84 0.82 15915
macro avg 0.77 0.78 0.77 15915
weighted avg 0.81 0.84 0.82 15915
|
| 0.0443 | 3.0 | 1041 | 0.1043 | precision recall f1-score support
CHEBI 0.71 0.73 0.72 616
CL 0.85 0.89 0.87 1740
GGP 0.84 0.76 0.80 611
GO 0.89 0.90 0.90 3810
SO 0.81 0.83 0.82 8854
Taxon 0.58 0.60 0.59 284
micro avg 0.82 0.84 0.83 15915
macro avg 0.78 0.79 0.78 15915
weighted avg 0.82 0.84 0.83 15915
|
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|