judithrosell's picture
End of training
5035cf1
metadata
license: mit
base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: PubMedBERT_JNLPBA_NER
    results: []

PubMedBERT_JNLPBA_NER

This model is a fine-tuned version of microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1449
  • Precision: 0.9556
  • Recall: 0.9503
  • F1: 0.9529
  • Accuracy: 0.9508

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2769 1.0 582 0.1556 0.9519 0.9473 0.9496 0.9472
0.1456 2.0 1164 0.1493 0.9551 0.9488 0.9519 0.9495
0.1291 3.0 1746 0.1449 0.9556 0.9503 0.9529 0.9508

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.0
  • Tokenizers 0.15.0