|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: m3rg-iitd/matscibert |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: VF_MatSciBERT_ST_1800 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# VF_MatSciBERT_ST_1800 |
|
|
|
This model is a fine-tuned version of [m3rg-iitd/matscibert](https://huggingface.co/m3rg-iitd/matscibert) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1894 |
|
- Precision: 0.7360 |
|
- Recall: 0.7770 |
|
- F1: 0.7560 |
|
- Accuracy: 0.9556 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 30 | 0.3205 | 0.4448 | 0.2093 | 0.2847 | 0.9095 | |
|
| No log | 2.0 | 60 | 0.2400 | 0.6346 | 0.6075 | 0.6208 | 0.9376 | |
|
| No log | 3.0 | 90 | 0.2236 | 0.6764 | 0.7010 | 0.6885 | 0.9450 | |
|
| No log | 4.0 | 120 | 0.1959 | 0.6664 | 0.7127 | 0.6888 | 0.9453 | |
|
| No log | 5.0 | 150 | 0.1958 | 0.7177 | 0.7514 | 0.7342 | 0.9519 | |
|
| No log | 6.0 | 180 | 0.1802 | 0.7180 | 0.7666 | 0.7415 | 0.9541 | |
|
| No log | 7.0 | 210 | 0.1911 | 0.7316 | 0.7668 | 0.7488 | 0.9546 | |
|
| No log | 8.0 | 240 | 0.1914 | 0.7384 | 0.7711 | 0.7544 | 0.9554 | |
|
| No log | 9.0 | 270 | 0.1873 | 0.7366 | 0.7745 | 0.7551 | 0.9556 | |
|
| No log | 10.0 | 300 | 0.1894 | 0.7360 | 0.7770 | 0.7560 | 0.9556 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|