metadata
language:
- de
- en
- multilingual
widget:
- text: >-
In December 1903 in France the Royal Swedish Academy of Sciences awarded
Pierre Curie, Marie Curie, and Henri Becquerel the Nobel Prize in Physics.
- text: >-
Für Richard Phillips Feynman war es immer wichtig in New York, die
unanschaulichen Gesetzmäßigkeiten der Quantenphysik Laien und Studenten
nahezubringen und verständlich zu machen.
- text: My name is Julian and I live in montreal
- text: My name is clara and I live in berkeley, california.
- text: My name is wolfgang and I live in berlin
tags:
- roberta
license: mit
datasets:
- wikiann
Roberta for Multilingual Named Entity Recognition
Model description
Limitations and bias
This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains.
Training data
Usage
model_tuned = RobertaForTokenClassification.from_pretrained("./results/checkpoint-final/")
text = "Für Richard Phillips Feynman war es immer wichtig in New York, die unanschaulichen Gesetzmäßigkeiten der Quantenphysik Laien und Studenten nahezubringen und verständlich zu machen."
inputs = tokenizer(
text,
add_special_tokens=False, return_tensors="pt"
)
with torch.no_grad():
logits = model_tuned(**inputs).logits
predicted_token_class_ids = logits.argmax(-1)
# Note that tokens are classified rather then input words which means that
# there might be more predicted token classes than words.
# Multiple token classes might account for the same word
predicted_tokens_classes = [model_tuned.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
predicted_tokens_classes