Edit model card

wav2vec2-conformer-rel-pos-large-finetuned-speech-commands

Model description

This model is a fine-tuned version of facebook/wav2vec2-conformer-rel-pos-large on the speech_commands dataset.

It achieves the following results on the evaluation set:

  • Loss: 0.5245
  • Accuracy: 0.9724

Intended uses & limitations

The model can spot one of the following keywords: "Yes", "No", "Up", "Down", "Left", "Right", "On", "Off", "Stop", "Go", "Zero", "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine", "Bed", "Bird", "Cat", "Dog", "Happy", "House", "Marvin", "Sheila", "Tree", "Wow", "Backward", "Forward", "Follow", "Learn", "Visual".

The repository includes sample files that I recorded (WAV, 16Khz sampling rate, mono). The simplest way to use the model is with the pipeline API:

>>> from transformers import pipeline
>>> p = pipeline("audio-classification", model="juliensimon/wav2vec2-conformer-rel-pos-large-finetuned-speech-commands")
>>> p("up16k.wav")
[{'score': 0.7008192539215088, 'label': 'up'}, {'score': 0.04346614331007004, 'label': 'off'}, {'score': 0.029526518657803535, 'label': 'left'}, {'score': 0.02905120886862278, 'label': 'stop'}, {'score': 0.027142534032464027, 'label': 'on'}]
>>> p("stop16k.wav")
[{'score': 0.6969656944274902, 'label': 'stop'}, {'score': 0.03391443192958832, 'label': 'up'}, {'score': 0.027382319793105125, 'label': 'seven'}, {'score': 0.020835857838392258, 'label': 'five'}, {'score': 0.018051736056804657, 'label': 'down'}]
>>> p("marvin16k.wav")
[{'score': 0.5276530981063843, 'label': 'marvin'}, {'score': 0.04645705968141556, 'label': 'down'}, {'score': 0.038583893328905106, 'label': 'backward'}, {'score': 0.03578080236911774, 'label': 'wow'}, {'score': 0.03178196772933006, 'label': 'bird'}]

You can also use them with the AutoAPI:

>>> import torch, librosa
>>> from transformers import AutoModelForAudioClassification, Wav2Vec2FeatureExtractor
>>> feature_extractor = Wav2Vec2FeatureExtractor()
>>> model = AutoModelForAudioClassification.from_pretrained("juliensimon/wav2vec2-conformer-rel-pos-large-finetuned-speech-commands")
>>> audio, rate = librosa.load("up16k.wav", sr = 16000)
>>> inputs = feature_extractor(audio, sampling_rate=16000, return_tensors = "pt")
>>> logits = model(inputs['input_values'])
>>> logits
SequenceClassifierOutput(loss=None, logits=tensor([[-0.4635, -1.0112,  4.7935,  0.8528,  1.6265,  0.6456,  1.5423,  2.0132,
          1.6103,  0.5847, -2.2526,  0.8839,  0.8163, -1.5655, -1.4160, -0.4196,
         -0.1097, -1.8827,  0.6609, -0.2022,  0.0971, -0.6205,  0.4492,  0.0926,
         -2.4848,  0.2630, -0.4584, -2.4327, -1.1654,  0.3897, -0.3374, -1.2418,
         -0.1045,  0.2827, -1.5667, -0.0963]], grad_fn=<AddmmBackward0>), hidden_states=None, attentions=None)
>>> classes = torch.softmax(logits.logits, dim=1)
>>> torch.set_printoptions(precision=3, sci_mode=False)
>>> classes
tensor([[    0.004,     0.002,     0.701,     0.014,     0.030,     0.011,
             0.027,     0.043,     0.029,     0.010,     0.001,     0.014,
             0.013,     0.001,     0.001,     0.004,     0.005,     0.001,
             0.011,     0.005,     0.006,     0.003,     0.009,     0.006,
             0.000,     0.008,     0.004,     0.001,     0.002,     0.009,
             0.004,     0.002,     0.005,     0.008,     0.001,     0.005]],
       grad_fn=<SoftmaxBackward0>)
>>> top_class = torch.argmax(logits.logits, dim=1)
>>> top_class
tensor([2])
>>> model.config.id2label[top_class.numpy()[0]]
'up'

Training and evaluation data

  • subset: v0.02
  • full training set
  • full validation set

Training procedure

The model was fine-tuned on Amazon SageMaker, using an ml.p3dn.24xlarge instance (8 NVIDIA V100 GPUs). Total training time for 10 epochs was 4.5 hours.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 1024
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2901 1.0 83 2.0542 0.8875
1.8375 2.0 166 1.5610 0.9316
1.4957 3.0 249 1.1850 0.9558
1.1917 4.0 332 0.9159 0.9695
1.0449 5.0 415 0.7624 0.9687
0.9319 6.0 498 0.6444 0.9715
0.8559 7.0 581 0.5806 0.9711
0.8199 8.0 664 0.5394 0.9721
0.7949 9.0 747 0.5245 0.9724
0.7975 10.0 830 0.5256 0.9721

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.11.0+cu102
  • Datasets 2.3.2
  • Tokenizers 0.12.1
Downloads last month
42
Safetensors
Model size
619M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train juliensimon/wav2vec2-conformer-rel-pos-large-finetuned-speech-commands

Spaces using juliensimon/wav2vec2-conformer-rel-pos-large-finetuned-speech-commands 2

Evaluation results