File size: 3,444 Bytes
0bfaffa
 
 
 
001826c
d322b88
0bfaffa
 
 
 
43f6bb2
 
0bfaffa
 
 
 
 
43f6bb2
0bfaffa
 
 
 
 
 
 
43f6bb2
0bfaffa
43f6bb2
0bfaffa
 
 
 
 
 
 
d322b88
0bfaffa
 
 
 
d322b88
 
 
 
 
 
 
 
 
 
 
 
 
 
cf51e05
d322b88
 
 
 
dea9e1c
d322b88
 
dea9e1c
d322b88
 
 
 
 
 
cf51e05
 
0bfaffa
 
d322b88
0bfaffa
 
 
27c7dcd
0bfaffa
 
 
27c7dcd
 
0bfaffa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dea9e1c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
---
license: mit
tags:
- generated_from_trainer
- language-identification
- openvino
datasets:
- fleurs
metrics:
- accuracy
pipeline_tag: text-classification
base_model: facebook/xlm-v-base
model-index:
- name: xlm-v-base-language-id
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: fleurs
      type: fleurs
      config: all
      split: validation
      args: all
    metrics:
    - type: accuracy
      value: 0.9930337861372344
      name: Accuracy
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlm-v-base-language-id

This model is a fine-tuned version of [facebook/xlm-v-base](https://huggingface.co/facebook/xlm-v-base) on the [google/fleurs](https://huggingface.co/datasets/google/fleurs) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0241
- Accuracy: 0.9930

# Usage

The simplest way to use the model is with a text classification pipeline:

```
from transformers import pipeline

model_id = "juliensimon/xlm-v-base-language-id"
p = pipeline("text-classification", model=model_id)
p("Hello world")
# [{'label': 'English', 'score': 0.9802148342132568}]
```

The model is also compatible with [Optimum Intel](https://github.com/huggingface/optimum-intel). 

For example, you can optimize it with Intel OpenVINO and enjoy a 2x inference speedup (or more).

```
from optimum.intel.openvino import OVModelForSequenceClassification
from transformers import AutoTokenizer, pipeline

model_id = "juliensimon/xlm-v-base-language-id"
ov_model = OVModelForSequenceClassification.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
p = pipeline("text-classification", model=ov_model, tokenizer=tokenizer)
p("Hello world")
# [{'label': 'English', 'score': 0.9802149534225464}]
```

An OpenVINO version of the model is available in the repository.

## Intended uses & limitations

The model can accurately detect 102 languages. You can find the list on the [dataset](https://huggingface.co/datasets/google/fleurs) page.

## Training and evaluation data

The model has been trained and evaluated on the complete google/fleurs training and validation sets.

## Training procedure

The training script is included in the repository. The model has been trained on an p3dn.24xlarge instance on AWS (8 NVIDIA V100 GPUs).

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6368        | 1.0   | 531  | 0.4593          | 0.9689   |
| 0.059         | 2.0   | 1062 | 0.0412          | 0.9899   |
| 0.0311        | 3.0   | 1593 | 0.0275          | 0.9918   |
| 0.0255        | 4.0   | 2124 | 0.0243          | 0.9928   |
| 0.017         | 5.0   | 2655 | 0.0241          | 0.9930   |


### Framework versions

- Transformers 4.26.0
- Pytorch 1.13.1
- Datasets 2.8.0
- Tokenizers 0.13.2