metadata
license: mit
base_model: facebook/bart-large-cnn
tags:
- summarization
- generated_from_trainer
datasets:
- scientific_papers
metrics:
- rouge
model-index:
- name: bart-large-cnn-finetuned-scientific-articles
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: scientific_papers
type: scientific_papers
config: pubmed
split: train
args: pubmed
metrics:
- name: Rouge1
type: rouge
value: 33.8477
bart-large-cnn-finetuned-scientific-articles
This model is a fine-tuned version of facebook/bart-large-cnn on the scientific_papers dataset. It achieves the following results on the evaluation set:
- Loss: 2.6456
- Rouge1: 33.8477
- Rouge2: 11.8866
- Rougel: 20.1038
- Rougelsum: 30.5011
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 9
- eval_batch_size: 9
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|
3.3695 | 1.0 | 56 | 2.8464 | 32.1056 | 10.3835 | 18.7541 | 29.2623 |
2.7639 | 2.0 | 112 | 2.6667 | 31.2657 | 10.758 | 18.9862 | 28.3279 |
2.5169 | 3.0 | 168 | 2.6219 | 33.226 | 11.4766 | 19.5923 | 30.0664 |
2.2985 | 4.0 | 224 | 2.6029 | 32.8562 | 11.5606 | 19.8616 | 29.7606 |
2.0851 | 5.0 | 280 | 2.6456 | 33.8477 | 11.8866 | 20.1038 | 30.5011 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1