Whisper-Small-zh-squeezeformer
This model is a fine-tuned version of openai/whisper-small on the Voice_Data_Collection dataset. It achieves the following results on the evaluation set:
- Loss: 3.0086
- Cer: 103.4976
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1500
- training_steps: 33000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Cer | Validation Loss |
---|---|---|---|---|
2.9928 | 1.5 | 1500 | 95.9754 | 3.0761 |
2.6515 | 3.0 | 3000 | 99.3160 | 2.8994 |
2.6062 | 4.5 | 4500 | 99.7704 | 2.8336 |
2.5246 | 6.0 | 6000 | 100.0351 | 2.8107 |
2.7344 | 7.5 | 7500 | 99.8360 | 2.7851 |
2.6095 | 9.0 | 9000 | 103.0852 | 2.7785 |
2.6911 | 10.5 | 10500 | 104.3667 | 2.7653 |
2.7004 | 12.0 | 12000 | 102.5464 | 2.7534 |
2.617 | 13.5 | 13500 | 100.7145 | 2.7050 |
2.5298 | 15.0 | 15000 | 100.9441 | 2.6941 |
2.634 | 16.5 | 16500 | 100.9558 | 2.6628 |
2.5629 | 18.0 | 18000 | 100.5552 | 2.6489 |
2.8322 | 19.5 | 19500 | 102.8018 | 2.7431 |
2.6619 | 21.0 | 21000 | 101.6984 | 2.7448 |
2.6874 | 22.5 | 22500 | 104.8258 | 2.9346 |
2.5785 | 24.0 | 24000 | 105.6364 | 2.9642 |
2.6002 | 25.5 | 25500 | 105.5333 | 2.9768 |
2.5124 | 27.0 | 27000 | 104.0621 | 3.0030 |
2.5252 | 28.5 | 28500 | 102.7526 | 2.9799 |
2.5209 | 30.0 | 30000 | 102.1060 | 3.0035 |
2.4584 | 31.5 | 31500 | 2.9897 | 102.8978 |
2.4354 | 33.0 | 33000 | 3.0086 | 103.4976 |
Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.1.2
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for jun-han/Whisper-Small-zh-squeezeformer
Base model
openai/whisper-small