randomization_model / README.md
jvalline's picture
Model save
2f9d89f verified
|
raw
history blame
2.34 kB
metadata
license: apache-2.0
base_model: t5-base
tags:
  - generated_from_trainer
metrics:
  - bleu
  - wer
model-index:
  - name: randomization_model
    results: []

randomization_model

This model is a fine-tuned version of t5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6576
  • Bleu: 0.0001
  • Wer: 0.9576
  • Gen Len: 18.9986

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Wer Gen Len
2.5767 0.16 1000 1.6626 0.0001 0.954 18.9985
1.9533 0.32 2000 1.5147 0.0001 0.9524 18.9986
1.8318 0.48 3000 1.4392 0.0001 0.9518 18.9986
1.7626 0.64 4000 1.3857 0.0001 0.9514 18.9986
1.7199 0.8 5000 1.3553 0.0001 0.951 18.9988
1.6727 0.96 6000 1.3325 0.0001 0.9507 18.9986
1.9628 1.12 7000 1.8528 0.0001 0.9524 18.9988
2.9138 1.28 8000 2.6299 0.0001 0.9568 18.9986
3.5506 1.44 9000 2.7483 0.0001 0.958 18.9987
3.5214 1.6 10000 2.7007 0.0001 0.9578 18.9986
3.4669 1.76 11000 2.6699 0.0001 0.9576 18.9986
3.4448 1.92 12000 2.6576 0.0001 0.9576 18.9986

Framework versions

  • Transformers 4.37.1
  • Pytorch 2.3.0.dev20240122+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1