kacper-cierzniewski's picture
End of training
43008ae
metadata
license: apache-2.0
base_model: facebook/detr-resnet-50
tags:
  - generated_from_trainer
datasets:
  - bpmn-shapes
model-index:
  - name: daigram_detr_r50_albumentations
    results: []

daigram_detr_r50_albumentations

This model is a fine-tuned version of facebook/detr-resnet-50 on the bpmn-shapes dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0088

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 500

Training results

Training Loss Epoch Step Validation Loss
3.8163 2.63 50 3.0660
2.9036 5.26 100 2.8878
2.7516 7.89 150 2.8043
2.6278 10.53 200 2.6820
2.4806 13.16 250 2.5676
2.3781 15.79 300 2.4282
2.253 18.42 350 2.3161
2.1405 21.05 400 2.1735
2.0263 23.68 450 2.0909
1.9732 26.32 500 2.0120
1.8647 28.95 550 1.9260
1.7793 31.58 600 1.8655
1.7706 34.21 650 1.8166
1.6792 36.84 700 1.7325
1.5654 39.47 750 1.7061
1.5802 42.11 800 1.6463
1.5053 44.74 850 1.5985
1.4858 47.37 900 1.6060
1.4186 50.0 950 1.5563
1.4391 52.63 1000 1.5219
1.3938 55.26 1050 1.4995
1.3734 57.89 1100 1.4661
1.3379 60.53 1150 1.4451
1.341 63.16 1200 1.4854
1.3647 65.79 1250 1.4509
1.3198 68.42 1300 1.4116
1.3054 71.05 1350 1.3821
1.2945 73.68 1400 1.3952
1.2899 76.32 1450 1.3868
1.2533 78.95 1500 1.3580
1.2655 81.58 1550 1.3374
1.2649 84.21 1600 1.3451
1.2286 86.84 1650 1.2973
1.2497 89.47 1700 1.3322
1.2456 92.11 1750 1.3289
1.2234 94.74 1800 1.3080
1.1695 97.37 1850 1.3218
1.2265 100.0 1900 1.3280
1.1899 102.63 1950 1.2834
1.1914 105.26 2000 1.2931
1.1698 107.89 2050 1.3176
1.177 110.53 2100 1.2896
1.1625 113.16 2150 1.2936
1.1626 115.79 2200 1.2614
1.1698 118.42 2250 1.2545
1.1703 121.05 2300 1.2398
1.1659 123.68 2350 1.2254
1.1734 126.32 2400 1.2489
1.1234 128.95 2450 1.2072
1.1464 131.58 2500 1.1707
1.1268 134.21 2550 1.1971
1.1511 136.84 2600 1.2247
1.1234 139.47 2650 1.1921
1.0923 142.11 2700 1.1751
1.1267 144.74 2750 1.1905
1.1021 147.37 2800 1.1885
1.1075 150.0 2850 1.1780
1.1116 152.63 2900 1.1666
1.0987 155.26 2950 1.1694
1.0974 157.89 3000 1.1931
1.0867 160.53 3050 1.1461
1.1076 163.16 3100 1.1501
1.0912 165.79 3150 1.1611
1.0671 168.42 3200 1.1718
1.0981 171.05 3250 1.1961
1.0602 173.68 3300 1.1786
1.0305 176.32 3350 1.1640
1.0647 178.95 3400 1.1416
1.0628 181.58 3450 1.1296
1.0856 184.21 3500 1.1140
1.0626 186.84 3550 1.1214
1.0782 189.47 3600 1.1449
1.0601 192.11 3650 1.1441
1.0906 194.74 3700 1.1396
1.0376 197.37 3750 1.1271
1.0625 200.0 3800 1.1397
1.057 202.63 3850 1.1121
1.0448 205.26 3900 1.1376
1.0747 207.89 3950 1.1475
1.0605 210.53 4000 1.0916
1.0344 213.16 4050 1.1001
1.0443 215.79 4100 1.0976
1.0202 218.42 4150 1.1240
1.078 221.05 4200 1.1024
1.0251 223.68 4250 1.0793
1.0353 226.32 4300 1.1153
1.0047 228.95 4350 1.0972
1.0143 231.58 4400 1.0948
1.0172 234.21 4450 1.1265
1.0299 236.84 4500 1.1038
0.9968 239.47 4550 1.0901
1.0233 242.11 4600 1.0945
0.9943 244.74 4650 1.0918
1.0321 247.37 4700 1.1270
1.0113 250.0 4750 1.1060
1.0229 252.63 4800 1.0859
0.9945 255.26 4850 1.0875
1.0073 257.89 4900 1.0976
1.0096 260.53 4950 1.0933
1.0 263.16 5000 1.0821
1.0326 265.79 5050 1.0747
0.997 268.42 5100 1.0931
1.0056 271.05 5150 1.0853
0.9858 273.68 5200 1.0945
1.0005 276.32 5250 1.0669
1.0217 278.95 5300 1.0497
0.9777 281.58 5350 1.0672
0.9888 284.21 5400 1.0844
0.9662 286.84 5450 1.0524
1.0029 289.47 5500 1.0519
0.984 292.11 5550 1.0538
0.9724 294.74 5600 1.0524
0.991 297.37 5650 1.0553
0.9936 300.0 5700 1.0601
0.9817 302.63 5750 1.0524
0.9868 305.26 5800 1.0644
0.9982 307.89 5850 1.0523
0.9814 310.53 5900 1.0611
0.9761 313.16 5950 1.0505
0.9507 315.79 6000 1.0361
0.9786 318.42 6050 1.0275
0.9684 321.05 6100 1.0292
0.9759 323.68 6150 1.0529
0.9442 326.32 6200 1.0689
0.9653 328.95 6250 1.0696
0.9579 331.58 6300 1.0572
1.0016 334.21 6350 1.0660
0.9462 336.84 6400 1.0525
0.9596 339.47 6450 1.0505
0.9655 342.11 6500 1.0514
0.9713 344.74 6550 1.0616
0.952 347.37 6600 1.0497
0.9433 350.0 6650 1.0389
0.9619 352.63 6700 1.0404
0.9594 355.26 6750 1.0332
0.9586 357.89 6800 1.0323
0.9582 360.53 6850 1.0294
0.9437 363.16 6900 1.0329
0.9585 365.79 6950 1.0361
0.9661 368.42 7000 1.0428
0.9603 371.05 7050 1.0299
0.9619 373.68 7100 1.0416
0.9766 376.32 7150 1.0471
0.9547 378.95 7200 1.0498
0.967 381.58 7250 1.0318
0.9463 384.21 7300 1.0238
0.9531 386.84 7350 1.0329
0.9342 389.47 7400 1.0354
0.939 392.11 7450 1.0312
0.9635 394.74 7500 1.0325
0.9261 397.37 7550 1.0245
0.962 400.0 7600 1.0381
0.9385 402.63 7650 1.0243
0.9422 405.26 7700 1.0235
0.9285 407.89 7750 1.0286
0.9598 410.53 7800 1.0353
0.9529 413.16 7850 1.0361
0.928 415.79 7900 1.0316
0.935 418.42 7950 1.0263
0.9456 421.05 8000 1.0368
0.9387 423.68 8050 1.0440
0.9321 426.32 8100 1.0440
0.9236 428.95 8150 1.0394
0.9448 431.58 8200 1.0467
0.9151 434.21 8250 1.0516
0.9373 436.84 8300 1.0383
0.9577 439.47 8350 1.0190
0.9199 442.11 8400 1.0215
0.9321 444.74 8450 1.0184
0.9387 447.37 8500 1.0236
0.9382 450.0 8550 1.0259
0.9391 452.63 8600 1.0282
0.9392 455.26 8650 1.0193
0.9438 457.89 8700 1.0124
0.9398 460.53 8750 1.0060
0.9246 463.16 8800 1.0140
0.9383 465.79 8850 1.0145
0.9267 468.42 8900 1.0122
0.9253 471.05 8950 1.0144
0.9238 473.68 9000 1.0065
0.9082 476.32 9050 1.0136
0.9287 478.95 9100 1.0120
0.9161 481.58 9150 1.0120
0.9093 484.21 9200 1.0128
0.9264 486.84 9250 1.0125
0.9487 489.47 9300 1.0131
0.9398 492.11 9350 1.0101
0.9039 494.74 9400 1.0090
0.908 497.37 9450 1.0097
0.944 500.0 9500 1.0088

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1