YAML Metadata
Error:
"tags" must be an array
DeBERTa: Decoding-enhanced BERT with Disentangled Attention
DeBERTa improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data.
Please check the official repository for more details and updates.
Fine-tuning on NLU tasks
We present the dev results on SQuAD 1.1/2.0 and MNLI tasks.
Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m |
---|---|---|---|
RoBERTa-base | 91.5/84.6 | 83.7/80.5 | 87.6 |
XLNet-Large | -/- | -/80.2 | 86.8 |
DeBERTa-base | 93.1/87.2 | 86.2/83.1 | 88.8 |
Citation
If you find DeBERTa useful for your work, please cite the following paper:
@inproceedings{
he2021deberta,
title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION},
author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=XPZIaotutsD}
}
- Downloads last month
- 402
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.