kanishka's picture
End of training
833954f verified
metadata
library_name: transformers
tags:
  - generated_from_trainer
datasets:
  - kanishka/babylm2-clean-spacy
metrics:
  - accuracy
model-index:
  - name: opt-babylm2-clean-spacy-32k-earlystop_seed-42_1e-3
    results:
      - task:
          name: Causal Language Modeling
          type: text-generation
        dataset:
          name: kanishka/babylm2-clean-spacy
          type: kanishka/babylm2-clean-spacy
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.43054403912594785

opt-babylm2-clean-spacy-32k-earlystop_seed-42_1e-3

This model was trained from scratch on the kanishka/babylm2-clean-spacy dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9103
  • Accuracy: 0.4305

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 32000
  • num_epochs: 20.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
5.9107 0.9995 1942 3.9887 0.3269
3.7896 1.9996 3885 3.5236 0.3657
3.3813 2.9997 5828 3.3040 0.3859
3.174 3.9997 7771 3.1921 0.3962
3.0533 4.9998 9714 3.1266 0.4026
2.9768 5.9999 11657 3.0838 0.4071
2.9232 6.9999 13600 3.0550 0.4101
2.8863 8.0 15543 3.0363 0.4122
2.8563 8.9995 17485 3.0208 0.4139
2.8356 9.9996 19428 3.0117 0.4151
2.816 10.9997 21371 3.0030 0.4162
2.8069 11.9997 23314 2.9951 0.4170
2.7941 12.9998 25257 2.9923 0.4175
2.7889 13.9999 27200 2.9888 0.4182
2.7802 14.9999 29143 2.9839 0.4186
2.7802 16.0 31086 2.9821 0.4190
2.7665 16.9995 33028 2.9626 0.4212
2.6908 17.9996 34971 2.9378 0.4247
2.6058 18.9997 36914 2.9145 0.4284
2.505 19.9910 38840 2.9103 0.4305

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0