metadata
library_name: transformers
tags:
- generated_from_trainer
datasets:
- kanishka/babylm2-clean-spacy
metrics:
- accuracy
model-index:
- name: opt-babylm2-clean-spacy-32k-earlystop_seed-42_1e-3
results:
- task:
name: Causal Language Modeling
type: text-generation
dataset:
name: kanishka/babylm2-clean-spacy
type: kanishka/babylm2-clean-spacy
metrics:
- name: Accuracy
type: accuracy
value: 0.43054403912594785
opt-babylm2-clean-spacy-32k-earlystop_seed-42_1e-3
This model was trained from scratch on the kanishka/babylm2-clean-spacy dataset. It achieves the following results on the evaluation set:
- Loss: 2.9103
- Accuracy: 0.4305
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 32000
- num_epochs: 20.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
5.9107 | 0.9995 | 1942 | 3.9887 | 0.3269 |
3.7896 | 1.9996 | 3885 | 3.5236 | 0.3657 |
3.3813 | 2.9997 | 5828 | 3.3040 | 0.3859 |
3.174 | 3.9997 | 7771 | 3.1921 | 0.3962 |
3.0533 | 4.9998 | 9714 | 3.1266 | 0.4026 |
2.9768 | 5.9999 | 11657 | 3.0838 | 0.4071 |
2.9232 | 6.9999 | 13600 | 3.0550 | 0.4101 |
2.8863 | 8.0 | 15543 | 3.0363 | 0.4122 |
2.8563 | 8.9995 | 17485 | 3.0208 | 0.4139 |
2.8356 | 9.9996 | 19428 | 3.0117 | 0.4151 |
2.816 | 10.9997 | 21371 | 3.0030 | 0.4162 |
2.8069 | 11.9997 | 23314 | 2.9951 | 0.4170 |
2.7941 | 12.9998 | 25257 | 2.9923 | 0.4175 |
2.7889 | 13.9999 | 27200 | 2.9888 | 0.4182 |
2.7802 | 14.9999 | 29143 | 2.9839 | 0.4186 |
2.7802 | 16.0 | 31086 | 2.9821 | 0.4190 |
2.7665 | 16.9995 | 33028 | 2.9626 | 0.4212 |
2.6908 | 17.9996 | 34971 | 2.9378 | 0.4247 |
2.6058 | 18.9997 | 36914 | 2.9145 | 0.4284 |
2.505 | 19.9910 | 38840 | 2.9103 | 0.4305 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0