kanishka's picture
End of training
3f74250 verified
|
raw
history blame
3.38 kB
metadata
library_name: transformers
tags:
  - generated_from_trainer
datasets:
  - kanishka/babylm2-rewritten-clean-spacy
metrics:
  - accuracy
model-index:
  - name: opt-babylm2-rewritten-clean-spacy-32k-earlystop-40epochs_seed-42_3e-4
    results:
      - task:
          name: Causal Language Modeling
          type: text-generation
        dataset:
          name: kanishka/babylm2-rewritten-clean-spacy
          type: kanishka/babylm2-rewritten-clean-spacy
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4202126468521879

opt-babylm2-rewritten-clean-spacy-32k-earlystop-40epochs_seed-42_3e-4

This model was trained from scratch on the kanishka/babylm2-rewritten-clean-spacy dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9892
  • Accuracy: 0.4202

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 32000
  • num_epochs: 40.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
6.8783 0.9996 1931 4.4654 0.2891
4.2263 1.9997 3863 3.9179 0.3337
3.7724 2.9999 5795 3.6397 0.3562
3.5091 4.0 7727 3.4569 0.3724
3.3306 4.9996 9658 3.3310 0.3838
3.2012 5.9997 11590 3.2469 0.3918
3.1088 6.9999 13522 3.1828 0.3982
3.0364 8.0 15454 3.1404 0.4023
2.9837 8.9996 17385 3.1080 0.4057
2.9377 9.9997 19317 3.0840 0.4077
2.9019 10.9999 21249 3.0633 0.4101
2.8713 12.0 23181 3.0505 0.4117
2.8449 12.9996 25112 3.0376 0.4130
2.8231 13.9997 27044 3.0270 0.4143
2.7828 14.9999 28976 3.0222 0.4150
2.7644 16.0 30908 3.0160 0.4156
2.7508 16.9996 32839 3.0100 0.4167
2.7296 17.9997 34771 3.0023 0.4178
2.7053 18.9999 36703 2.9967 0.4188
2.6821 20.0 38635 2.9926 0.4195
2.6601 20.9996 40566 2.9892 0.4202
2.6406 21.9997 42498 2.9898 0.4204
2.621 22.9999 44430 2.9921 0.4205
2.6048 24.0 46362 2.9928 0.4207

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0