|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_keras_callback |
|
datasets: |
|
- disfl_qa |
|
metrics: |
|
- validation_accuracy |
|
model-index: |
|
- name: fintuned-bert-disfluency |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: disfl_qa |
|
type: disfl_qa |
|
args: disfl_qa |
|
metrics: |
|
- name: Validation Accuracy |
|
type: validation_accuracy |
|
value: 0.9795 |
|
widget: |
|
- text: "I love football so much" |
|
example_title: "Non Disfluent" |
|
- text: "I love love football I like it" |
|
example_title: "Disfluent" |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# fintuned-bert-disfluency |
|
|
|
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.0814 |
|
- Train Sparse Categorical Accuracy: 0.9795 |
|
- Validation Loss: 0.0816 |
|
- Validation Sparse Categorical Accuracy: 0.9795 |
|
- Epoch: 2 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch | |
|
|:----------:|:---------------------------------:|:---------------:|:--------------------------------------:|:-----:| |
|
| 0.1105 | 0.9694 | 0.0821 | 0.9800 | 0 | |
|
| 0.0942 | 0.9759 | 0.0987 | 0.9765 | 1 | |
|
| 0.0814 | 0.9795 | 0.0816 | 0.9795 | 2 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.21.3 |
|
- TensorFlow 2.8.2 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|