metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: >-
Building TopazMarket Prev AptosLabs Founder AptosNames All views posts
and opinions shared are my own Not financial advice
- text: >-
Founder FrequenC__ an awardwinning marketing agency for the next internet
Mentor speaker cat mom Tweets are my own opinion libertylabsxyz
- text: >-
No1 ExchangeIndonesia Pertama Terdaftar dan Teregulasi di Bappebti CS
Live Chat 247 Jakarta Capital Region
- text: producer business and elsewhere on leave views my own la gran manzana
- text: >-
Founder GainForestNow CoLead ETHBiodivX CL ClimateChangeAI PhD ETH
prevGermanyHong_Kong_SAR_ChinaVietnam Son of Hoa refugees hehim Zurich
Switzerland
pipeline_tag: text-classification
inference: true
base_model: BAAI/bge-small-en-v1.5
model-index:
- name: SetFit with BAAI/bge-small-en-v1.5
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.5565092989985694
name: Accuracy
SetFit with BAAI/bge-small-en-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-small-en-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 28 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
UNDETERMINED |
|
NFT_ARTIST |
|
ONCHAIN_ANALYST |
|
BUSINESS_DEVELOPER |
|
NFT_COLLECTOR |
|
DEVELOPER |
|
TRADER |
|
COMMUNITY_MANAGER |
|
SECURITY_AUDITOR |
|
VENTURE_CAPITALIST |
|
INVESTOR |
|
ANGEL_INVESTOR |
|
EXECUTIVE |
|
MARKETER |
|
DATA_SCIENTIST |
|
EDUCATOR |
|
INFLUENCER |
|
ADVISOR |
|
BLOGGER |
|
RESEARCHER |
|
METAVERSE_ENTHUSIAST |
|
NODE_OPERATOR |
|
LAWYER |
|
DATA_ANALYST |
|
MINER |
|
SHITCOINER |
|
FINANCIAL_ANALYST |
|
BUSINESS_ANALYST |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.5565 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("kasparas12/crypto_individual_infer_model_setfit")
# Run inference
preds = model("producer business and elsewhere on leave views my own la gran manzana")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 13.3415 | 65 |
Label | Training Sample Count |
---|---|
DEVELOPER | 2111 |
DATA_SCIENTIST | 93 |
DATA_ANALYST | 25 |
NODE_OPERATOR | 71 |
MINER | 47 |
SECURITY_AUDITOR | 352 |
INVESTOR | 484 |
ANGEL_INVESTOR | 160 |
VENTURE_CAPITALIST | 941 |
TRADER | 270 |
SHITCOINER | 88 |
BUSINESS_DEVELOPER | 917 |
BUSINESS_ANALYST | 1 |
COMMUNITY_MANAGER | 401 |
MARKETER | 190 |
FINANCIAL_ANALYST | 72 |
ADVISOR | 150 |
RESEARCHER | 691 |
ONCHAIN_ANALYST | 45 |
EXECUTIVE | 741 |
INFLUENCER | 834 |
LAWYER | 137 |
BLOGGER | 198 |
NFT_COLLECTOR | 335 |
NFT_ARTIST | 598 |
EDUCATOR | 281 |
METAVERSE_ENTHUSIAST | 132 |
UNDETERMINED | 2216 |
Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0001 | 1 | 0.2625 | - |
0.0064 | 50 | 0.2677 | - |
0.0127 | 100 | 0.2515 | - |
0.0191 | 150 | 0.2413 | - |
0.0254 | 200 | 0.2374 | - |
0.0318 | 250 | 0.2383 | - |
0.0381 | 300 | 0.222 | - |
0.0445 | 350 | 0.1972 | - |
0.0509 | 400 | 0.2268 | - |
0.0572 | 450 | 0.2333 | - |
0.0636 | 500 | 0.199 | - |
0.0699 | 550 | 0.2035 | - |
0.0763 | 600 | 0.1676 | - |
0.0827 | 650 | 0.1566 | - |
0.0890 | 700 | 0.1909 | - |
0.0954 | 750 | 0.189 | - |
0.1017 | 800 | 0.1872 | - |
0.1081 | 850 | 0.1576 | - |
0.1144 | 900 | 0.1382 | - |
0.1208 | 950 | 0.1603 | - |
0.1272 | 1000 | 0.155 | - |
0.1335 | 1050 | 0.1764 | - |
0.1399 | 1100 | 0.1506 | - |
0.1462 | 1150 | 0.1439 | - |
0.1526 | 1200 | 0.1581 | - |
0.1590 | 1250 | 0.1494 | - |
0.1653 | 1300 | 0.1622 | - |
0.1717 | 1350 | 0.1503 | - |
0.1780 | 1400 | 0.1094 | - |
0.1844 | 1450 | 0.1576 | - |
0.1907 | 1500 | 0.1194 | - |
0.1971 | 1550 | 0.1515 | - |
0.2035 | 1600 | 0.1662 | - |
0.2098 | 1650 | 0.1642 | - |
0.2162 | 1700 | 0.0943 | - |
0.2225 | 1750 | 0.1472 | - |
0.2289 | 1800 | 0.1622 | - |
0.2352 | 1850 | 0.0809 | - |
0.2416 | 1900 | 0.1623 | - |
0.2480 | 1950 | 0.1444 | - |
0.2543 | 2000 | 0.1304 | - |
0.2607 | 2050 | 0.1175 | - |
0.2670 | 2100 | 0.078 | - |
0.2734 | 2150 | 0.1189 | - |
0.2798 | 2200 | 0.141 | - |
0.2861 | 2250 | 0.1233 | - |
0.2925 | 2300 | 0.1446 | - |
0.2988 | 2350 | 0.1076 | - |
0.3052 | 2400 | 0.1016 | - |
0.3115 | 2450 | 0.0818 | - |
0.3179 | 2500 | 0.1384 | - |
0.3243 | 2550 | 0.1065 | - |
0.3306 | 2600 | 0.1029 | - |
0.3370 | 2650 | 0.1227 | - |
0.3433 | 2700 | 0.0982 | - |
0.3497 | 2750 | 0.0959 | - |
0.3561 | 2800 | 0.0851 | - |
0.3624 | 2850 | 0.1028 | - |
0.3688 | 2900 | 0.1136 | - |
0.3751 | 2950 | 0.1111 | - |
0.3815 | 3000 | 0.115 | - |
0.3878 | 3050 | 0.1183 | - |
0.3942 | 3100 | 0.0689 | - |
0.4006 | 3150 | 0.1004 | - |
0.4069 | 3200 | 0.1079 | - |
0.4133 | 3250 | 0.112 | - |
0.4196 | 3300 | 0.0758 | - |
0.4260 | 3350 | 0.09 | - |
0.4323 | 3400 | 0.1267 | - |
0.4387 | 3450 | 0.1024 | - |
0.4451 | 3500 | 0.1352 | - |
0.4514 | 3550 | 0.0681 | - |
0.4578 | 3600 | 0.0483 | - |
0.4641 | 3650 | 0.0937 | - |
0.4705 | 3700 | 0.0744 | - |
0.4769 | 3750 | 0.0926 | - |
0.4832 | 3800 | 0.0764 | - |
0.4896 | 3850 | 0.0814 | - |
0.4959 | 3900 | 0.108 | - |
0.5023 | 3950 | 0.0936 | - |
0.5086 | 4000 | 0.0687 | - |
0.5150 | 4050 | 0.0607 | - |
0.5214 | 4100 | 0.0829 | - |
0.5277 | 4150 | 0.0772 | - |
0.5341 | 4200 | 0.0309 | - |
0.5404 | 4250 | 0.0797 | - |
0.5468 | 4300 | 0.063 | - |
0.5532 | 4350 | 0.071 | - |
0.5595 | 4400 | 0.0667 | - |
0.5659 | 4450 | 0.121 | - |
0.5722 | 4500 | 0.0565 | - |
0.5786 | 4550 | 0.0915 | - |
0.5849 | 4600 | 0.0613 | - |
0.5913 | 4650 | 0.0479 | - |
0.5977 | 4700 | 0.0622 | - |
0.6040 | 4750 | 0.0687 | - |
0.6104 | 4800 | 0.0635 | - |
0.6167 | 4850 | 0.1233 | - |
0.6231 | 4900 | 0.0351 | - |
0.6295 | 4950 | 0.0717 | - |
0.6358 | 5000 | 0.0906 | - |
0.6422 | 5050 | 0.0712 | - |
0.6485 | 5100 | 0.1133 | - |
0.6549 | 5150 | 0.0757 | - |
0.6612 | 5200 | 0.0809 | - |
0.6676 | 5250 | 0.112 | - |
0.6740 | 5300 | 0.0893 | - |
0.6803 | 5350 | 0.0591 | - |
0.6867 | 5400 | 0.0872 | - |
0.6930 | 5450 | 0.0937 | - |
0.6994 | 5500 | 0.038 | - |
0.7057 | 5550 | 0.0793 | - |
0.7121 | 5600 | 0.0569 | - |
0.7185 | 5650 | 0.0861 | - |
0.7248 | 5700 | 0.1022 | - |
0.7312 | 5750 | 0.0759 | - |
0.7375 | 5800 | 0.0451 | - |
0.7439 | 5850 | 0.08 | - |
0.7503 | 5900 | 0.058 | - |
0.7566 | 5950 | 0.0423 | - |
0.7630 | 6000 | 0.043 | - |
0.7693 | 6050 | 0.109 | - |
0.7757 | 6100 | 0.072 | - |
0.7820 | 6150 | 0.0342 | - |
0.7884 | 6200 | 0.0833 | - |
0.7948 | 6250 | 0.0643 | - |
0.8011 | 6300 | 0.1069 | - |
0.8075 | 6350 | 0.0713 | - |
0.8138 | 6400 | 0.0807 | - |
0.8202 | 6450 | 0.0518 | - |
0.8266 | 6500 | 0.0796 | - |
0.8329 | 6550 | 0.0954 | - |
0.8393 | 6600 | 0.0709 | - |
0.8456 | 6650 | 0.0541 | - |
0.8520 | 6700 | 0.0503 | - |
0.8583 | 6750 | 0.0737 | - |
0.8647 | 6800 | 0.0931 | - |
0.8711 | 6850 | 0.0636 | - |
0.8774 | 6900 | 0.0579 | - |
0.8838 | 6950 | 0.1168 | - |
0.8901 | 7000 | 0.0751 | - |
0.8965 | 7050 | 0.0945 | - |
0.9028 | 7100 | 0.0396 | - |
0.9092 | 7150 | 0.0623 | - |
0.9156 | 7200 | 0.0641 | - |
0.9219 | 7250 | 0.0697 | - |
0.9283 | 7300 | 0.0675 | - |
0.9346 | 7350 | 0.0544 | - |
0.9410 | 7400 | 0.0803 | - |
0.9474 | 7450 | 0.0549 | - |
0.9537 | 7500 | 0.0612 | - |
0.9601 | 7550 | 0.0721 | - |
0.9664 | 7600 | 0.0692 | - |
0.9728 | 7650 | 0.07 | - |
0.9791 | 7700 | 0.0476 | - |
0.9855 | 7750 | 0.0673 | - |
0.9919 | 7800 | 0.0606 | - |
0.9982 | 7850 | 0.1001 | - |
Framework Versions
- Python: 3.9.16
- SetFit: 1.0.3
- Sentence Transformers: 2.2.2
- Transformers: 4.21.3
- PyTorch: 1.12.1+cu116
- Datasets: 2.4.0
- Tokenizers: 0.12.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}