SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 119 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
79 |
|
86 |
|
37 |
|
82 |
|
95 |
|
83 |
|
107 |
|
19 |
|
102 |
|
35 |
|
18 |
|
65 |
|
68 |
|
40 |
|
50 |
|
113 |
|
75 |
|
11 |
|
38 |
|
63 |
|
44 |
|
115 |
|
42 |
|
97 |
|
70 |
|
34 |
|
10 |
|
15 |
|
77 |
|
43 |
|
7 |
|
17 |
|
8 |
|
103 |
|
26 |
|
99 |
|
33 |
|
64 |
|
96 |
|
1 |
|
62 |
|
39 |
|
60 |
|
92 |
|
114 |
|
105 |
|
90 |
|
91 |
|
45 |
|
59 |
|
46 |
|
21 |
|
69 |
|
101 |
|
61 |
|
104 |
|
32 |
|
51 |
|
48 |
|
87 |
|
22 |
|
41 |
|
93 |
|
71 |
|
2 |
|
89 |
|
20 |
|
52 |
|
55 |
|
58 |
|
118 |
|
25 |
|
109 |
|
30 |
|
24 |
|
9 |
|
94 |
|
16 |
|
78 |
|
4 |
|
23 |
|
111 |
|
12 |
|
98 |
|
57 |
|
67 |
|
31 |
|
85 |
|
116 |
|
88 |
|
74 |
|
72 |
|
108 |
|
73 |
|
13 |
|
76 |
|
54 |
|
100 |
|
84 |
|
14 |
|
27 |
|
49 |
|
29 |
|
106 |
|
112 |
|
66 |
|
53 |
|
117 |
|
81 |
|
5 |
|
28 |
|
56 |
|
110 |
|
47 |
|
3 |
|
0 |
|
80 |
|
6 |
|
36 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.5762 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("kaustubhgap/kaustubh_setfit")
# Run inference
preds = model("tube")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 1.7047 | 6 |
Label | Training Sample Count |
---|---|
0 | 2 |
1 | 5 |
2 | 12 |
3 | 2 |
4 | 6 |
5 | 3 |
6 | 2 |
7 | 12 |
8 | 16 |
9 | 2 |
10 | 2 |
11 | 11 |
12 | 4 |
13 | 2 |
14 | 2 |
15 | 2 |
16 | 2 |
17 | 6 |
18 | 9 |
19 | 63 |
20 | 8 |
21 | 31 |
22 | 6 |
23 | 2 |
24 | 13 |
25 | 5 |
26 | 2 |
27 | 2 |
28 | 3 |
29 | 2 |
30 | 13 |
31 | 3 |
32 | 7 |
33 | 22 |
34 | 12 |
35 | 102 |
36 | 2 |
37 | 119 |
38 | 34 |
39 | 32 |
40 | 6 |
41 | 2 |
42 | 13 |
43 | 17 |
44 | 5 |
45 | 10 |
46 | 6 |
47 | 2 |
48 | 10 |
49 | 2 |
50 | 91 |
51 | 13 |
52 | 2 |
53 | 2 |
54 | 2 |
55 | 12 |
56 | 4 |
57 | 7 |
58 | 17 |
59 | 2 |
60 | 2 |
61 | 7 |
62 | 9 |
63 | 3 |
64 | 14 |
65 | 53 |
66 | 3 |
67 | 6 |
68 | 41 |
69 | 41 |
70 | 33 |
71 | 5 |
72 | 5 |
73 | 4 |
74 | 7 |
75 | 49 |
76 | 2 |
77 | 23 |
78 | 11 |
79 | 12 |
80 | 2 |
81 | 5 |
82 | 33 |
83 | 33 |
84 | 2 |
85 | 2 |
86 | 17 |
87 | 2 |
88 | 2 |
89 | 10 |
90 | 29 |
91 | 2 |
92 | 8 |
93 | 21 |
94 | 2 |
95 | 3 |
96 | 5 |
97 | 10 |
98 | 5 |
99 | 6 |
100 | 6 |
101 | 12 |
102 | 13 |
103 | 2 |
104 | 10 |
105 | 28 |
106 | 2 |
107 | 321 |
108 | 2 |
109 | 10 |
110 | 2 |
111 | 2 |
112 | 2 |
113 | 15 |
114 | 4 |
115 | 2 |
116 | 5 |
117 | 2 |
118 | 2 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (5, 5)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0002 | 1 | 0.2895 | - |
0.0112 | 50 | 0.2531 | - |
0.0225 | 100 | 0.2622 | - |
0.0337 | 150 | 0.2535 | - |
0.0449 | 200 | 0.2144 | - |
0.0561 | 250 | 0.206 | - |
0.0674 | 300 | 0.1583 | - |
0.0786 | 350 | 0.1384 | - |
0.0898 | 400 | 0.1778 | - |
0.1011 | 450 | 0.2111 | - |
0.1123 | 500 | 0.1791 | - |
0.1235 | 550 | 0.2198 | - |
0.1347 | 600 | 0.0918 | - |
0.1460 | 650 | 0.1027 | - |
0.1572 | 700 | 0.1837 | - |
0.1684 | 750 | 0.1762 | - |
0.1797 | 800 | 0.1552 | - |
0.1909 | 850 | 0.2045 | - |
0.2021 | 900 | 0.1338 | - |
0.2133 | 950 | 0.0495 | - |
0.2246 | 1000 | 0.1136 | - |
0.2358 | 1050 | 0.0878 | - |
0.2470 | 1100 | 0.1671 | - |
0.2583 | 1150 | 0.0791 | - |
0.2695 | 1200 | 0.1332 | - |
0.2807 | 1250 | 0.0712 | - |
0.2919 | 1300 | 0.1853 | - |
0.3032 | 1350 | 0.134 | - |
0.3144 | 1400 | 0.1123 | - |
0.3256 | 1450 | 0.0525 | - |
0.3369 | 1500 | 0.0901 | - |
0.3481 | 1550 | 0.1554 | - |
0.3593 | 1600 | 0.0417 | - |
0.3705 | 1650 | 0.0762 | - |
0.3818 | 1700 | 0.0155 | - |
0.3930 | 1750 | 0.0115 | - |
0.4042 | 1800 | 0.0665 | - |
0.4155 | 1850 | 0.0578 | - |
0.4267 | 1900 | 0.0271 | - |
0.4379 | 1950 | 0.1374 | - |
0.4491 | 2000 | 0.1125 | - |
0.4604 | 2050 | 0.0304 | - |
0.4716 | 2100 | 0.0636 | - |
0.4828 | 2150 | 0.0668 | - |
0.4940 | 2200 | 0.1055 | - |
0.5053 | 2250 | 0.1147 | - |
0.5165 | 2300 | 0.0358 | - |
0.5277 | 2350 | 0.1516 | - |
0.5390 | 2400 | 0.008 | - |
0.5502 | 2450 | 0.082 | - |
0.5614 | 2500 | 0.0937 | - |
0.5726 | 2550 | 0.1382 | - |
0.5839 | 2600 | 0.0527 | - |
0.5951 | 2650 | 0.1091 | - |
0.6063 | 2700 | 0.0031 | - |
0.6176 | 2750 | 0.0181 | - |
0.6288 | 2800 | 0.1366 | - |
0.6400 | 2850 | 0.0178 | - |
0.6512 | 2900 | 0.0571 | - |
0.6625 | 2950 | 0.0271 | - |
0.6737 | 3000 | 0.0368 | - |
0.6849 | 3050 | 0.0652 | - |
0.6962 | 3100 | 0.0858 | - |
0.7074 | 3150 | 0.016 | - |
0.7186 | 3200 | 0.0318 | - |
0.7298 | 3250 | 0.0119 | - |
0.7411 | 3300 | 0.0314 | - |
0.7523 | 3350 | 0.008 | - |
0.7635 | 3400 | 0.0192 | - |
0.7748 | 3450 | 0.0363 | - |
0.7860 | 3500 | 0.0474 | - |
0.7972 | 3550 | 0.0172 | - |
0.8084 | 3600 | 0.0308 | - |
0.8197 | 3650 | 0.1168 | - |
0.8309 | 3700 | 0.0367 | - |
0.8421 | 3750 | 0.1572 | - |
0.8534 | 3800 | 0.0865 | - |
0.8646 | 3850 | 0.0124 | - |
0.8758 | 3900 | 0.0674 | - |
0.8870 | 3950 | 0.0534 | - |
0.8983 | 4000 | 0.0042 | - |
0.9095 | 4050 | 0.0503 | - |
0.9207 | 4100 | 0.0753 | - |
0.9320 | 4150 | 0.0079 | - |
0.9432 | 4200 | 0.1386 | - |
0.9544 | 4250 | 0.0693 | - |
0.9656 | 4300 | 0.0505 | - |
0.9769 | 4350 | 0.0153 | - |
0.9881 | 4400 | 0.0456 | - |
0.9993 | 4450 | 0.077 | - |
1.0 | 4453 | - | 0.1885 |
1.0106 | 4500 | 0.0107 | - |
1.0218 | 4550 | 0.0533 | - |
1.0330 | 4600 | 0.0069 | - |
1.0442 | 4650 | 0.0073 | - |
1.0555 | 4700 | 0.0521 | - |
1.0667 | 4750 | 0.0084 | - |
1.0779 | 4800 | 0.0443 | - |
1.0892 | 4850 | 0.0504 | - |
1.1004 | 4900 | 0.0445 | - |
1.1116 | 4950 | 0.0169 | - |
1.1228 | 5000 | 0.016 | - |
1.1341 | 5050 | 0.0046 | - |
1.1453 | 5100 | 0.0103 | - |
1.1565 | 5150 | 0.0404 | - |
1.1678 | 5200 | 0.0117 | - |
1.1790 | 5250 | 0.0399 | - |
1.1902 | 5300 | 0.0598 | - |
1.2014 | 5350 | 0.015 | - |
1.2127 | 5400 | 0.0048 | - |
1.2239 | 5450 | 0.0047 | - |
1.2351 | 5500 | 0.0042 | - |
1.2464 | 5550 | 0.0106 | - |
1.2576 | 5600 | 0.0041 | - |
1.2688 | 5650 | 0.1593 | - |
1.2800 | 5700 | 0.0386 | - |
1.2913 | 5750 | 0.0059 | - |
1.3025 | 5800 | 0.0043 | - |
1.3137 | 5850 | 0.0039 | - |
1.3249 | 5900 | 0.0101 | - |
1.3362 | 5950 | 0.0043 | - |
1.3474 | 6000 | 0.0056 | - |
1.3586 | 6050 | 0.002 | - |
1.3699 | 6100 | 0.0064 | - |
1.3811 | 6150 | 0.0106 | - |
1.3923 | 6200 | 0.03 | - |
1.4035 | 6250 | 0.0945 | - |
1.4148 | 6300 | 0.0025 | - |
1.4260 | 6350 | 0.0631 | - |
1.4372 | 6400 | 0.0068 | - |
1.4485 | 6450 | 0.0583 | - |
1.4597 | 6500 | 0.0015 | - |
1.4709 | 6550 | 0.0042 | - |
1.4821 | 6600 | 0.0093 | - |
1.4934 | 6650 | 0.0046 | - |
1.5046 | 6700 | 0.009 | - |
1.5158 | 6750 | 0.0279 | - |
1.5271 | 6800 | 0.0357 | - |
1.5383 | 6850 | 0.0282 | - |
1.5495 | 6900 | 0.0188 | - |
1.5607 | 6950 | 0.0405 | - |
1.5720 | 7000 | 0.0645 | - |
1.5832 | 7050 | 0.0066 | - |
1.5944 | 7100 | 0.0205 | - |
1.6057 | 7150 | 0.0038 | - |
1.6169 | 7200 | 0.0696 | - |
1.6281 | 7250 | 0.0055 | - |
1.6393 | 7300 | 0.0034 | - |
1.6506 | 7350 | 0.006 | - |
1.6618 | 7400 | 0.015 | - |
1.6730 | 7450 | 0.0023 | - |
1.6843 | 7500 | 0.0173 | - |
1.6955 | 7550 | 0.0601 | - |
1.7067 | 7600 | 0.0039 | - |
1.7179 | 7650 | 0.0201 | - |
1.7292 | 7700 | 0.0206 | - |
1.7404 | 7750 | 0.0042 | - |
1.7516 | 7800 | 0.0156 | - |
1.7629 | 7850 | 0.002 | - |
1.7741 | 7900 | 0.0059 | - |
1.7853 | 7950 | 0.0327 | - |
1.7965 | 8000 | 0.0206 | - |
1.8078 | 8050 | 0.0698 | - |
1.8190 | 8100 | 0.0217 | - |
1.8302 | 8150 | 0.0309 | - |
1.8415 | 8200 | 0.0136 | - |
1.8527 | 8250 | 0.0455 | - |
1.8639 | 8300 | 0.0645 | - |
1.8751 | 8350 | 0.0127 | - |
1.8864 | 8400 | 0.0056 | - |
1.8976 | 8450 | 0.0127 | - |
1.9088 | 8500 | 0.0024 | - |
1.9201 | 8550 | 0.0117 | - |
1.9313 | 8600 | 0.0626 | - |
1.9425 | 8650 | 0.0357 | - |
1.9537 | 8700 | 0.056 | - |
1.9650 | 8750 | 0.0311 | - |
1.9762 | 8800 | 0.0123 | - |
1.9874 | 8850 | 0.0638 | - |
1.9987 | 8900 | 0.0328 | - |
2.0 | 8906 | - | 0.2196 |
2.0099 | 8950 | 0.0015 | - |
2.0211 | 9000 | 0.0178 | - |
2.0323 | 9050 | 0.08 | - |
2.0436 | 9100 | 0.0983 | - |
2.0548 | 9150 | 0.0049 | - |
2.0660 | 9200 | 0.0092 | - |
2.0773 | 9250 | 0.0619 | - |
2.0885 | 9300 | 0.0159 | - |
2.0997 | 9350 | 0.0598 | - |
2.1109 | 9400 | 0.0343 | - |
2.1222 | 9450 | 0.0092 | - |
2.1334 | 9500 | 0.0013 | - |
2.1446 | 9550 | 0.0042 | - |
2.1558 | 9600 | 0.0059 | - |
2.1671 | 9650 | 0.0076 | - |
2.1783 | 9700 | 0.0027 | - |
2.1895 | 9750 | 0.0174 | - |
2.2008 | 9800 | 0.0044 | - |
2.2120 | 9850 | 0.0164 | - |
2.2232 | 9900 | 0.0015 | - |
2.2344 | 9950 | 0.0026 | - |
2.2457 | 10000 | 0.0118 | - |
2.2569 | 10050 | 0.0054 | - |
2.2681 | 10100 | 0.0016 | - |
2.2794 | 10150 | 0.0095 | - |
2.2906 | 10200 | 0.0157 | - |
2.3018 | 10250 | 0.0465 | - |
2.3130 | 10300 | 0.0024 | - |
2.3243 | 10350 | 0.0009 | - |
2.3355 | 10400 | 0.0101 | - |
2.3467 | 10450 | 0.0266 | - |
2.3580 | 10500 | 0.0022 | - |
2.3692 | 10550 | 0.0016 | - |
2.3804 | 10600 | 0.0096 | - |
2.3916 | 10650 | 0.0052 | - |
2.4029 | 10700 | 0.0656 | - |
2.4141 | 10750 | 0.0481 | - |
2.4253 | 10800 | 0.0148 | - |
2.4366 | 10850 | 0.0024 | - |
2.4478 | 10900 | 0.0039 | - |
2.4590 | 10950 | 0.0011 | - |
2.4702 | 11000 | 0.0142 | - |
2.4815 | 11050 | 0.0617 | - |
2.4927 | 11100 | 0.0069 | - |
2.5039 | 11150 | 0.0063 | - |
2.5152 | 11200 | 0.0218 | - |
2.5264 | 11250 | 0.0018 | - |
2.5376 | 11300 | 0.0017 | - |
2.5488 | 11350 | 0.0105 | - |
2.5601 | 11400 | 0.0019 | - |
2.5713 | 11450 | 0.0027 | - |
2.5825 | 11500 | 0.0616 | - |
2.5938 | 11550 | 0.0704 | - |
2.6050 | 11600 | 0.0047 | - |
2.6162 | 11650 | 0.0106 | - |
2.6274 | 11700 | 0.0067 | - |
2.6387 | 11750 | 0.0272 | - |
2.6499 | 11800 | 0.0476 | - |
2.6611 | 11850 | 0.0401 | - |
2.6724 | 11900 | 0.0017 | - |
2.6836 | 11950 | 0.0247 | - |
2.6948 | 12000 | 0.0173 | - |
2.7060 | 12050 | 0.0129 | - |
2.7173 | 12100 | 0.0041 | - |
2.7285 | 12150 | 0.0017 | - |
2.7397 | 12200 | 0.0137 | - |
2.7510 | 12250 | 0.0629 | - |
2.7622 | 12300 | 0.034 | - |
2.7734 | 12350 | 0.0533 | - |
2.7846 | 12400 | 0.057 | - |
2.7959 | 12450 | 0.0153 | - |
2.8071 | 12500 | 0.0023 | - |
2.8183 | 12550 | 0.0013 | - |
2.8296 | 12600 | 0.0014 | - |
2.8408 | 12650 | 0.0023 | - |
2.8520 | 12700 | 0.0026 | - |
2.8632 | 12750 | 0.0027 | - |
2.8745 | 12800 | 0.0064 | - |
2.8857 | 12850 | 0.0174 | - |
2.8969 | 12900 | 0.0017 | - |
2.9082 | 12950 | 0.0242 | - |
2.9194 | 13000 | 0.0487 | - |
2.9306 | 13050 | 0.0022 | - |
2.9418 | 13100 | 0.0108 | - |
2.9531 | 13150 | 0.0079 | - |
2.9643 | 13200 | 0.0108 | - |
2.9755 | 13250 | 0.0027 | - |
2.9868 | 13300 | 0.0053 | - |
2.9980 | 13350 | 0.0039 | - |
3.0 | 13359 | - | 0.2038 |
3.0092 | 13400 | 0.0089 | - |
3.0204 | 13450 | 0.0369 | - |
3.0317 | 13500 | 0.0107 | - |
3.0429 | 13550 | 0.0187 | - |
3.0541 | 13600 | 0.0038 | - |
3.0653 | 13650 | 0.0072 | - |
3.0766 | 13700 | 0.005 | - |
3.0878 | 13750 | 0.0192 | - |
3.0990 | 13800 | 0.0084 | - |
3.1103 | 13850 | 0.002 | - |
3.1215 | 13900 | 0.0011 | - |
3.1327 | 13950 | 0.0037 | - |
3.1439 | 14000 | 0.0087 | - |
3.1552 | 14050 | 0.0014 | - |
3.1664 | 14100 | 0.0029 | - |
3.1776 | 14150 | 0.0176 | - |
3.1889 | 14200 | 0.0028 | - |
3.2001 | 14250 | 0.012 | - |
3.2113 | 14300 | 0.0933 | - |
3.2225 | 14350 | 0.002 | - |
3.2338 | 14400 | 0.053 | - |
3.2450 | 14450 | 0.0117 | - |
3.2562 | 14500 | 0.0227 | - |
3.2675 | 14550 | 0.0055 | - |
3.2787 | 14600 | 0.008 | - |
3.2899 | 14650 | 0.0512 | - |
3.3011 | 14700 | 0.0025 | - |
3.3124 | 14750 | 0.0432 | - |
3.3236 | 14800 | 0.002 | - |
3.3348 | 14850 | 0.013 | - |
3.3461 | 14900 | 0.0026 | - |
3.3573 | 14950 | 0.0022 | - |
3.3685 | 15000 | 0.0225 | - |
3.3797 | 15050 | 0.0611 | - |
3.3910 | 15100 | 0.0261 | - |
3.4022 | 15150 | 0.0026 | - |
3.4134 | 15200 | 0.004 | - |
3.4247 | 15250 | 0.0054 | - |
3.4359 | 15300 | 0.0132 | - |
3.4471 | 15350 | 0.0017 | - |
3.4583 | 15400 | 0.0213 | - |
3.4696 | 15450 | 0.007 | - |
3.4808 | 15500 | 0.0507 | - |
3.4920 | 15550 | 0.0039 | - |
3.5033 | 15600 | 0.0059 | - |
3.5145 | 15650 | 0.0357 | - |
3.5257 | 15700 | 0.0009 | - |
3.5369 | 15750 | 0.0014 | - |
3.5482 | 15800 | 0.0011 | - |
3.5594 | 15850 | 0.0082 | - |
3.5706 | 15900 | 0.001 | - |
3.5819 | 15950 | 0.0045 | - |
3.5931 | 16000 | 0.0205 | - |
3.6043 | 16050 | 0.0096 | - |
3.6155 | 16100 | 0.0286 | - |
3.6268 | 16150 | 0.0043 | - |
3.6380 | 16200 | 0.0029 | - |
3.6492 | 16250 | 0.0079 | - |
3.6605 | 16300 | 0.0036 | - |
3.6717 | 16350 | 0.0013 | - |
3.6829 | 16400 | 0.0086 | - |
3.6941 | 16450 | 0.0049 | - |
3.7054 | 16500 | 0.0006 | - |
3.7166 | 16550 | 0.0467 | - |
3.7278 | 16600 | 0.002 | - |
3.7391 | 16650 | 0.0229 | - |
3.7503 | 16700 | 0.0532 | - |
3.7615 | 16750 | 0.001 | - |
3.7727 | 16800 | 0.0034 | - |
3.7840 | 16850 | 0.0117 | - |
3.7952 | 16900 | 0.0424 | - |
3.8064 | 16950 | 0.0032 | - |
3.8177 | 17000 | 0.0024 | - |
3.8289 | 17050 | 0.0011 | - |
3.8401 | 17100 | 0.0024 | - |
3.8513 | 17150 | 0.0059 | - |
3.8626 | 17200 | 0.0005 | - |
3.8738 | 17250 | 0.0074 | - |
3.8850 | 17300 | 0.0517 | - |
3.8962 | 17350 | 0.0081 | - |
3.9075 | 17400 | 0.0131 | - |
3.9187 | 17450 | 0.051 | - |
3.9299 | 17500 | 0.0114 | - |
3.9412 | 17550 | 0.0008 | - |
3.9524 | 17600 | 0.0094 | - |
3.9636 | 17650 | 0.001 | - |
3.9748 | 17700 | 0.0069 | - |
3.9861 | 17750 | 0.002 | - |
3.9973 | 17800 | 0.003 | - |
4.0 | 17812 | - | 0.2278 |
4.0085 | 17850 | 0.0309 | - |
4.0198 | 17900 | 0.005 | - |
4.0310 | 17950 | 0.0028 | - |
4.0422 | 18000 | 0.0069 | - |
4.0534 | 18050 | 0.002 | - |
4.0647 | 18100 | 0.0384 | - |
4.0759 | 18150 | 0.0123 | - |
4.0871 | 18200 | 0.0657 | - |
4.0984 | 18250 | 0.0042 | - |
4.1096 | 18300 | 0.0043 | - |
4.1208 | 18350 | 0.0035 | - |
4.1320 | 18400 | 0.0389 | - |
4.1433 | 18450 | 0.0303 | - |
4.1545 | 18500 | 0.002 | - |
4.1657 | 18550 | 0.0009 | - |
4.1770 | 18600 | 0.0025 | - |
4.1882 | 18650 | 0.1035 | - |
4.1994 | 18700 | 0.0033 | - |
4.2106 | 18750 | 0.0038 | - |
4.2219 | 18800 | 0.0161 | - |
4.2331 | 18850 | 0.0415 | - |
4.2443 | 18900 | 0.003 | - |
4.2556 | 18950 | 0.0055 | - |
4.2668 | 19000 | 0.0064 | - |
4.2780 | 19050 | 0.0656 | - |
4.2892 | 19100 | 0.0011 | - |
4.3005 | 19150 | 0.0252 | - |
4.3117 | 19200 | 0.0076 | - |
4.3229 | 19250 | 0.0051 | - |
4.3342 | 19300 | 0.0042 | - |
4.3454 | 19350 | 0.0043 | - |
4.3566 | 19400 | 0.014 | - |
4.3678 | 19450 | 0.0047 | - |
4.3791 | 19500 | 0.0043 | - |
4.3903 | 19550 | 0.0014 | - |
4.4015 | 19600 | 0.0017 | - |
4.4128 | 19650 | 0.0811 | - |
4.4240 | 19700 | 0.0013 | - |
4.4352 | 19750 | 0.0332 | - |
4.4464 | 19800 | 0.0636 | - |
4.4577 | 19850 | 0.0068 | - |
4.4689 | 19900 | 0.0076 | - |
4.4801 | 19950 | 0.0217 | - |
4.4914 | 20000 | 0.0387 | - |
4.5026 | 20050 | 0.0077 | - |
4.5138 | 20100 | 0.0778 | - |
4.5250 | 20150 | 0.0523 | - |
4.5363 | 20200 | 0.0597 | - |
4.5475 | 20250 | 0.0092 | - |
4.5587 | 20300 | 0.0684 | - |
4.5700 | 20350 | 0.0151 | - |
4.5812 | 20400 | 0.0007 | - |
4.5924 | 20450 | 0.0018 | - |
4.6036 | 20500 | 0.0003 | - |
4.6149 | 20550 | 0.0051 | - |
4.6261 | 20600 | 0.0144 | - |
4.6373 | 20650 | 0.011 | - |
4.6486 | 20700 | 0.0061 | - |
4.6598 | 20750 | 0.0066 | - |
4.6710 | 20800 | 0.0046 | - |
4.6822 | 20850 | 0.0511 | - |
4.6935 | 20900 | 0.0198 | - |
4.7047 | 20950 | 0.001 | - |
4.7159 | 21000 | 0.0022 | - |
4.7272 | 21050 | 0.053 | - |
4.7384 | 21100 | 0.0025 | - |
4.7496 | 21150 | 0.034 | - |
4.7608 | 21200 | 0.0147 | - |
4.7721 | 21250 | 0.0684 | - |
4.7833 | 21300 | 0.0012 | - |
4.7945 | 21350 | 0.0029 | - |
4.8057 | 21400 | 0.0014 | - |
4.8170 | 21450 | 0.0522 | - |
4.8282 | 21500 | 0.0766 | - |
4.8394 | 21550 | 0.0031 | - |
4.8507 | 21600 | 0.0012 | - |
4.8619 | 21650 | 0.0011 | - |
4.8731 | 21700 | 0.0235 | - |
4.8843 | 21750 | 0.001 | - |
4.8956 | 21800 | 0.0178 | - |
4.9068 | 21850 | 0.0006 | - |
4.9180 | 21900 | 0.0092 | - |
4.9293 | 21950 | 0.025 | - |
4.9405 | 22000 | 0.017 | - |
4.9517 | 22050 | 0.0052 | - |
4.9629 | 22100 | 0.0437 | - |
4.9742 | 22150 | 0.0019 | - |
4.9854 | 22200 | 0.0039 | - |
4.9966 | 22250 | 0.0015 | - |
5.0 | 22265 | - | 0.2357 |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.2.2
- Transformers: 4.36.1
- PyTorch: 2.0.1+cu118
- Datasets: 2.15.0
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.