|
--- |
|
license: apache-2.0 |
|
base_model: google/flan-t5-base |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: kaytoo2022/t5_technical_qa_with_react |
|
results: [] |
|
inference: true |
|
library_name: transformers |
|
pipeline_tag: text2text-generation |
|
widget: |
|
- text: >- |
|
summarize: function Example() { |
|
let [isLoading, setIsLoading] = React.useState(false); |
|
|
|
let handlePress = () => { |
|
// Trigger button pending state |
|
setIsLoading(true); |
|
|
|
setTimeout(() => { |
|
// Cancel button pending state |
|
setIsLoading(false); |
|
}, 3000); |
|
}; |
|
|
|
return ( |
|
<Button variant="primary" isPending={isLoading} onPress={handlePress}> |
|
Click me! |
|
</Button> |
|
); |
|
} |
|
example_title: Question answering |
|
- text: >- |
|
question: What does the setTimeout function do? context: function Example() { |
|
let [isLoading, setIsLoading] = React.useState(false); |
|
|
|
let handlePress = () => { |
|
// Trigger button pending state |
|
setIsLoading(true); |
|
|
|
setTimeout(() => { |
|
// Cancel button pending state |
|
setIsLoading(false); |
|
}, 3000); |
|
}; |
|
|
|
return ( |
|
<Button variant="primary" isPending={isLoading} onPress={handlePress}> |
|
Click me! |
|
</Button> |
|
); |
|
} |
|
example_title: Summarization |
|
|
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# kaytoo2022/t5_technical_qa_with_react |
|
|
|
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 2.0191 |
|
- Validation Loss: 2.0546 |
|
- Epoch: 3 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Epoch | |
|
|:----------:|:---------------:|:-----:| |
|
| 2.5717 | 2.2548 | 0 | |
|
| 2.2680 | 2.1607 | 1 | |
|
| 2.1248 | 2.1008 | 2 | |
|
| 2.0191 | 2.0546 | 3 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- TensorFlow 2.17.0 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |