tags: | |
- ultralyticsplus | |
- yolov8 | |
- ultralytics | |
- yolo | |
- vision | |
- image-classification | |
- pytorch | |
- awesome-yolov8-models | |
library_name: ultralytics | |
library_version: 8.0.20 | |
inference: false | |
datasets: | |
- keremberke/indoor-scene-classification | |
model-index: | |
- name: keremberke/yolov8m-scene-classification | |
results: | |
- task: | |
type: image-classification | |
dataset: | |
type: keremberke/indoor-scene-classification | |
name: indoor-scene-classification | |
split: validation | |
metrics: | |
- type: accuracy | |
value: 0.02439 # min: 0.0 - max: 1.0 | |
name: top1 accuracy | |
- type: accuracy | |
value: 0.08216 # min: 0.0 - max: 1.0 | |
name: top5 accuracy | |
<div align="center"> | |
<img width="640" alt="keremberke/yolov8m-scene-classification" src="https://huggingface.co/keremberke/yolov8m-scene-classification/resolve/main/thumbnail.jpg"> | |
</div> | |
### Supported Labels | |
``` | |
['airport_inside', 'artstudio', 'auditorium', 'bakery', 'bookstore', 'bowling', 'buffet', 'casino', 'children_room', 'church_inside', 'classroom', 'cloister', 'closet', 'clothingstore', 'computerroom', 'concert_hall', 'corridor', 'deli', 'dentaloffice', 'dining_room', 'elevator', 'fastfood_restaurant', 'florist', 'gameroom', 'garage', 'greenhouse', 'grocerystore', 'gym', 'hairsalon', 'hospitalroom', 'inside_bus', 'inside_subway', 'jewelleryshop', 'kindergarden', 'kitchen', 'laboratorywet', 'laundromat', 'library', 'livingroom', 'lobby', 'locker_room', 'mall', 'meeting_room', 'movietheater', 'museum', 'nursery', 'office', 'operating_room', 'pantry', 'poolinside', 'prisoncell', 'restaurant', 'restaurant_kitchen', 'shoeshop', 'stairscase', 'studiomusic', 'subway', 'toystore', 'trainstation', 'tv_studio', 'videostore', 'waitingroom', 'warehouse', 'winecellar'] | |
``` | |
### How to use | |
- Install [ultralyticsplus](https://github.com/fcakyon/ultralyticsplus): | |
```bash | |
pip install ultralyticsplus==0.0.21 | |
``` | |
- Load model and perform prediction: | |
```python | |
from ultralyticsplus import YOLO, postprocess_classify_output | |
# load model | |
model = YOLO('keremberke/yolov8m-scene-classification') | |
# set model parameters | |
model.overrides['conf'] = 0.25 # model confidence threshold | |
# set image | |
image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg' | |
# perform inference | |
results = model.predict(image) | |
# observe results | |
print(results[0].probs) # [0.1, 0.2, 0.3, 0.4] | |
processed_result = postprocess_classify_output(model, result=results[0]) | |
print(processed_result) # {"cat": 0.4, "dog": 0.6} | |
``` | |