PPO Agent Playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2. To learn to code your own PPO agent and train it Unit 8 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit8
Hyperparameters
{'exp_name': 'ppo'
'seed': 1
'torch_deterministic': True
'cuda': False
'track': False
'wandb_project_name': 'cleanRL'
'wandb_entity': 'KeWangRL'
'capture_video': False
'env_id': 'LunarLander-v2'
'total_timesteps': 1000000
'learning_rate': 0.00035
'num_envs': 8
'num_steps': 128
'anneal_lr': True
'gae': True
'gamma': 0.99
'gae_lambda': 0.95
'num_minibatches': 4
'update_epochs': 4
'norm_adv': True
'clip_coef': 0.2
'clip_vloss': True
'ent_coef': 0.015
'vf_coef': 0.5
'max_grad_norm': 0.5
'target_kl': 0.015
'repo_id': 'kewangRL/LunarLander-v2'
'batch_size': 1024
'minibatch_size': 256}
Evaluation results
- mean_reward on LunarLander-v2self-reported15.03 +/- 87.72