|
---
|
|
license: cc-by-nc-4.0
|
|
base_model: MCG-NJU/videomae-base-finetuned-kinetics
|
|
tags:
|
|
- generated_from_trainer
|
|
metrics:
|
|
- accuracy
|
|
model-index:
|
|
- name: videomae-finetuned
|
|
results: []
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# videomae-finetuned
|
|
|
|
This model is a fine-tuned version of [MCG-NJU/videomae-base-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-base-finetuned-kinetics) on an unknown dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 0.1289
|
|
- Accuracy: 0.9706
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 5e-05
|
|
- train_batch_size: 16
|
|
- eval_batch_size: 16
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- lr_scheduler_warmup_ratio: 0.2
|
|
- training_steps: 8620
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
|
| 0.7657 | 0.05 | 432 | 0.6104 | 0.8243 |
|
|
| 0.4011 | 1.05 | 864 | 0.4283 | 0.8896 |
|
|
| 0.301 | 2.05 | 1296 | 0.3957 | 0.8833 |
|
|
| 0.2967 | 3.05 | 1728 | 0.3066 | 0.9138 |
|
|
| 0.229 | 4.05 | 2160 | 0.3268 | 0.9092 |
|
|
| 0.2185 | 5.05 | 2592 | 0.2865 | 0.9281 |
|
|
| 0.1863 | 6.05 | 3024 | 0.2550 | 0.9320 |
|
|
| 0.1386 | 7.05 | 3456 | 0.2366 | 0.9422 |
|
|
| 0.1542 | 8.05 | 3888 | 0.2162 | 0.9449 |
|
|
| 0.1396 | 9.05 | 4320 | 0.2069 | 0.9424 |
|
|
| 0.1323 | 10.05 | 4752 | 0.2021 | 0.9486 |
|
|
| 0.1008 | 11.05 | 5184 | 0.2408 | 0.9465 |
|
|
| 0.0756 | 12.05 | 5616 | 0.2023 | 0.9509 |
|
|
| 0.0628 | 13.05 | 6048 | 0.1730 | 0.9609 |
|
|
| 0.0747 | 14.05 | 6480 | 0.1747 | 0.9622 |
|
|
| 0.047 | 15.05 | 6912 | 0.1698 | 0.9629 |
|
|
| 0.0586 | 16.05 | 7344 | 0.1412 | 0.9668 |
|
|
| 0.0644 | 17.05 | 7776 | 0.1314 | 0.9704 |
|
|
| 0.0521 | 18.05 | 8208 | 0.1343 | 0.9688 |
|
|
| 0.0516 | 19.05 | 8620 | 0.1289 | 0.9706 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.38.1
|
|
- Pytorch 2.0.1+cu118
|
|
- Datasets 2.18.0
|
|
- Tokenizers 0.15.2
|
|
|