metadata
language:
- hi
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_7_0
- generated_from_trainer
- hi
datasets:
- wav2vec2-large-xls-r-300m-hi
model-index:
- name: wav2vec2-large-xls-r-300m-hi
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7
type: mozilla-foundation/common_voice_7_0
args: hi
metrics:
- name: Test WER
type: wer
value: 35.31946325249292
- name: Test CER
type: cer
value: 11.310803379493075
wav2vec2-large-xls-r-300m-hi-CV7
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the COMMON_VOICE dataset. It achieves the following results on the evaluation set:
- Loss: 0.6588
- Wer: 0.2987
Training hyperparameters
The following hyperparameters were used during training:
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 60
- mixed_precision_training: Native AMP
Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0