leonardlin's picture
Update README.md
a2f95cd verified
|
raw
history blame
3.56 kB
---
library_name: transformers
license: apache-2.0
base_model: cyberagent/Mistral-Nemo-Japanese-Instruct-2408
tags:
- generated_from_trainer
model-index:
- name: outputs/mistral-nemo-webnovels
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
base_model: cyberagent/Mistral-Nemo-Japanese-Instruct-2408
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: chatml
datasets:
- path: falche/paradox_test_set_200k_sharegpt
type: sharegpt
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/mistral-nemo-webnovels
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
use_wandb: true
wandb_project: mistral-nemo-webnovels
wandb_entity: augmxnt
wandb_name: mi300x-cyberagent_mistral_nemo_webnovels-fft-dsz3
gradient_accumulation_steps: 1
micro_batch_size: 8
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: linear
learning_rate: 8e-6
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
```
</details><br>
# outputs/mistral-nemo-webnovels
This model is a fine-tuned version of [cyberagent/Mistral-Nemo-Japanese-Instruct-2408](https://huggingface.co/cyberagent/Mistral-Nemo-Japanese-Instruct-2408) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6891
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.6086 | 0.0008 | 1 | 2.5794 |
| 1.8703 | 0.5 | 615 | 1.8224 |
| 1.7873 | 1.0 | 1230 | 1.7534 |
| 1.6708 | 1.4976 | 1845 | 1.7214 |
| 1.6567 | 1.9976 | 2460 | 1.6919 |
| 1.501 | 2.4951 | 3075 | 1.6984 |
| 1.5237 | 2.9951 | 3690 | 1.6891 |
### Framework versions
- Transformers 4.45.2
- Pytorch 2.5.0+rocm6.2
- Datasets 3.0.1
- Tokenizers 0.20.1
### Training Infra
Compute sponsored by []HotAisle](https://huggingface.co/hotaisle) on an 8 x MI300X node. See the [WandB Run Logs](https://wandb.ai/augmxnt/mistral-nemo-webnovels) for additional details.