w2v-bert-2.0-nepali / README.md
kiranpantha's picture
End of training
1577c41 verified
|
raw
history blame
2.5 kB
metadata
library_name: transformers
language:
  - ne
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
datasets:
  - kiranpantha/OpenSLR54-Balanced-Nepali
metrics:
  - wer
model-index:
  - name: Wave2Vec2-Bert2.0 - Kiran Pantha
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: OpenSLR54
          type: kiranpantha/OpenSLR54-Balanced-Nepali
          config: default
          split: test
          args: 'config: ne, split: train,test'
        metrics:
          - name: Wer
            type: wer
            value: 0.2604166666666667

Wave2Vec2-Bert2.0 - Kiran Pantha

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the OpenSLR54 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2182
  • Wer: 0.2604

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.4889 0.1800 300 0.8423 0.8076
0.7028 0.3599 600 0.6309 0.5951
0.5787 0.5399 900 0.5455 0.5167
0.476 0.7199 1200 0.4670 0.5109
0.4094 0.8998 1500 0.4415 0.4382
0.3345 1.0798 1800 0.3395 0.3951
0.2545 1.2597 2100 0.3266 0.3609
0.2444 1.4397 2400 0.2814 0.3204
0.2214 1.6197 2700 0.2593 0.2947
0.1846 1.7996 3000 0.2256 0.2685
0.1783 1.9796 3300 0.2182 0.2604

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.4.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1