whisper-tiny-ne / README.md
kiranpantha's picture
End of training
243f9bb verified
metadata
library_name: transformers
language:
  - ne
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - openslr/openslr
metrics:
  - wer
model-index:
  - name: Whisper Medium - Kiran Pantha
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: OpenSLR54
          type: openslr/openslr
          config: default
          split: test
          args: 'config: ne, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 53.889856134884994

Whisper Medium - Kiran Pantha

This model is a fine-tuned version of openai/whisper-tiny on the OpenSLR54 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2728
  • Wer: 53.8899

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6656 0.1200 500 0.6245 85.4211
0.4586 0.2399 1000 0.4490 73.6369
0.3772 0.3599 1500 0.3930 68.5879
0.3437 0.4798 2000 0.3498 63.7222
0.3214 0.5998 2500 0.3279 61.2297
0.3186 0.7198 3000 0.3095 59.3696
0.2965 0.8397 3500 0.2930 56.9504
0.2759 0.9597 4000 0.2825 56.0249
0.2474 1.0797 4500 0.2758 54.5588
0.2195 1.1996 5000 0.2728 53.8899

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1