|
--- |
|
language: |
|
- en |
|
tags: |
|
- question-answering |
|
- summarization |
|
- emotion-detection |
|
license: Apache 2.0 |
|
datasets: |
|
- coqa |
|
- squad_v2 |
|
- go_emotions |
|
- cnn_dailymail |
|
metrics: |
|
- f1 |
|
--- |
|
# T5 Base with QA + Summary + Emotion |
|
|
|
## Description |
|
|
|
This model was finetuned on the CoQa, Squad 2, GoEmotions and CNN/DailyMail. |
|
|
|
It achieves a score of *F1 76.7* on the Squad 2 dev set and a score of *F1 68.5* on the CoQa dev set. |
|
|
|
Summarisation and emotion detection has not been evaluated yet. |
|
|
|
## Usage |
|
|
|
### Question answering |
|
|
|
```python |
|
from transformers import T5ForConditionalGeneration, T5Tokenizer |
|
model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion") |
|
tokenizer = T5Tokenizer.from_pretrained("t5-base") |
|
|
|
def get_answer(question, prev_qa, context): |
|
input_text = [f"q: {qa[0]} a: {qa[1]}" for qa in prev_qa] |
|
input_text.append(f"q: {question}") |
|
input_text.append(f"c: {context}") |
|
input_text = " ".join(input_text) |
|
features = tokenizer([input_text], return_tensors='pt') |
|
tokens = model.generate(input_ids=features['input_ids'], |
|
attention_mask=features['attention_mask'], max_length=64) |
|
return tokenizer.decode(tokens[0], skip_special_tokens=True) |
|
|
|
print(get_answer("Why is the moon yellow?", "I'm not entirely sure why the moon is yellow.")) # unknown |
|
|
|
context = "Elon Musk left OpenAI to avoid possible future conflicts with his role as CEO of Tesla." |
|
|
|
print(get_answer("Why not?", [("Does Elon Musk still work with OpenAI", "No")], context)) # to avoid possible future conflicts with his role as CEO of Tesla |
|
``` |
|
|
|
### Summarisation |
|
|
|
```python |
|
from transformers import T5ForConditionalGeneration, T5Tokenizer |
|
model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion") |
|
tokenizer = T5Tokenizer.from_pretrained("t5-base") |
|
|
|
def summary(context): |
|
input_text = f"summarize: {context}" |
|
features = tokenizer([input_text], return_tensors='pt') |
|
tokens = model.generate(input_ids=features['input_ids'], |
|
attention_mask=features['attention_mask'], max_length=64) |
|
return tokenizer.decode(tokens[0], skip_special_tokens=True) |
|
``` |
|
|
|
### Emotion detection |
|
|
|
```python |
|
from transformers import T5ForConditionalGeneration, T5Tokenizer |
|
model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion") |
|
tokenizer = T5Tokenizer.from_pretrained("t5-base") |
|
|
|
def emotion(context): |
|
input_text = f"emotion: {context}" |
|
features = tokenizer([input_text], return_tensors='pt') |
|
tokens = model.generate(input_ids=features['input_ids'], |
|
attention_mask=features['attention_mask'], max_length=64) |
|
return tokenizer.decode(tokens[0], skip_special_tokens=True) |
|
``` |
|
|