Edit model card

hubert_zeroth_gpu_scratch

This model is a fine-tuned version of on the zeroth_korean_asr dataset. It achieves the following results on the evaluation set:

  • Loss: 4.8280
  • Wer: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
10.6349 0.14 100 4.8579 1.0
4.7539 0.29 200 4.7308 1.0
4.7255 0.43 300 4.7278 1.0
4.7124 0.57 400 5.3295 1.0
4.7543 0.72 500 4.7487 1.0
4.8932 0.86 600 4.9136 1.0
4.8533 1.01 700 4.8799 1.0
4.8483 1.15 800 4.8665 1.0
4.8424 1.29 900 4.8622 1.0
4.8426 1.44 1000 4.8506 1.0
4.8373 1.58 1100 4.8603 1.0
4.8452 1.72 1200 4.8537 1.0
4.8391 1.87 1300 4.8520 1.0
4.8405 2.01 1400 4.8682 1.0
4.8375 2.16 1500 4.8637 1.0
4.8413 2.3 1600 4.8664 1.0
4.8388 2.44 1700 4.8473 1.0
4.8389 2.59 1800 4.8484 1.0
4.8343 2.73 1900 4.8629 1.0
4.8294 2.87 2000 4.8571 1.0
4.827 3.02 2100 4.8472 1.0
4.8316 3.16 2200 4.8576 1.0
4.8241 3.3 2300 4.8398 1.0
4.8333 3.45 2400 4.8603 1.0
4.8387 3.59 2500 4.8484 1.0
4.8312 3.74 2600 4.8420 1.0
4.8304 3.88 2700 4.8398 1.0
4.8291 4.02 2800 4.8355 1.0
4.8326 4.17 2900 4.8415 1.0
4.8274 4.31 3000 4.8338 1.0
4.8245 4.45 3100 4.8389 1.0
4.83 4.6 3200 4.8332 1.0
4.8335 4.74 3300 4.8393 1.0
4.829 4.89 3400 4.8352 1.0
4.832 5.03 3500 4.8329 1.0
4.8285 5.17 3600 4.8343 1.0
4.8302 5.32 3700 4.8381 1.0
4.8371 5.46 3800 4.8426 1.0
4.8226 5.6 3900 4.8383 1.0
4.8257 5.75 4000 4.8372 1.0
4.8222 5.89 4100 4.8332 1.0
4.8255 6.03 4200 4.8437 1.0
4.8277 6.18 4300 4.8351 1.0
4.8257 6.32 4400 4.8368 1.0
4.8301 6.47 4500 4.8345 1.0
4.8267 6.61 4600 4.8343 1.0
4.8296 6.75 4700 4.8388 1.0
4.828 6.9 4800 4.8374 1.0
4.8173 7.04 4900 4.8375 1.0
4.8234 7.18 5000 4.8348 1.0
4.8233 7.33 5100 4.8349 1.0
4.8232 7.47 5200 4.8339 1.0
4.8293 7.61 5300 4.8386 1.0
4.8305 7.76 5400 4.8385 1.0
4.8253 7.9 5500 4.8315 1.0
4.823 8.05 5600 4.8325 1.0
4.8313 8.19 5700 4.8311 1.0
4.8284 8.33 5800 4.8329 1.0
4.8199 8.48 5900 4.8329 1.0
4.8208 8.62 6000 4.8319 1.0
4.8315 8.76 6100 4.8334 1.0
4.8265 8.91 6200 4.8308 1.0
4.8218 9.05 6300 4.8313 1.0
4.8172 9.2 6400 4.8294 1.0
4.8231 9.34 6500 4.8299 1.0
4.825 9.48 6600 4.8311 1.0
4.826 9.63 6700 4.8299 1.0
4.8269 9.77 6800 4.8321 1.0
4.8275 9.91 6900 4.8306 1.0
4.8199 10.06 7000 4.8302 1.0
4.8217 10.2 7100 4.8316 1.0
4.8237 10.34 7200 4.8296 1.0
4.8253 10.49 7300 4.8318 1.0
4.8256 10.63 7400 4.8320 1.0
4.8265 10.78 7500 4.8297 1.0
4.8201 10.92 7600 4.8309 1.0
4.8259 11.06 7700 4.8302 1.0
4.8216 11.21 7800 4.8315 1.0
4.8206 11.35 7900 4.8328 1.0
4.8249 11.49 8000 4.8290 1.0
4.8231 11.64 8100 4.8297 1.0
4.8232 11.78 8200 4.8303 1.0
4.8245 11.93 8300 4.8283 1.0
4.8224 12.07 8400 4.8309 1.0
4.822 12.21 8500 4.8341 1.0
4.8234 12.36 8600 4.8300 1.0
4.8233 12.5 8700 4.8302 1.0
4.825 12.64 8800 4.8301 1.0
4.8246 12.79 8900 4.8310 1.0
4.8169 12.93 9000 4.8308 1.0
4.8194 13.07 9100 4.8319 1.0
4.8182 13.22 9200 4.8334 1.0
4.8245 13.36 9300 4.8334 1.0
4.8274 13.51 9400 4.8427 1.0
4.8194 13.65 9500 4.8393 1.0
4.825 13.79 9600 4.8368 1.0
4.8162 13.94 9700 4.8371 1.0
4.8213 14.08 9800 4.8359 1.0
4.8275 14.22 9900 4.8330 1.0
4.8119 14.37 10000 4.8328 1.0
4.8267 14.51 10100 4.8327 1.0
4.8218 14.66 10200 4.8328 1.0
4.8221 14.8 10300 4.8344 1.0
4.8181 14.94 10400 4.8330 1.0
4.8204 15.09 10500 4.8326 1.0
4.8235 15.23 10600 4.8340 1.0
4.8113 15.37 10700 4.8330 1.0
4.8268 15.52 10800 4.8330 1.0
4.8199 15.66 10900 4.8341 1.0
4.8213 15.8 11000 4.8320 1.0
4.8268 15.95 11100 4.8345 1.0
4.8113 16.09 11200 4.8367 1.0
4.8216 16.24 11300 4.8358 1.0
4.8287 16.38 11400 4.8343 1.0
4.8185 16.52 11500 4.8341 1.0
4.8226 16.67 11600 4.8321 1.0
4.8187 16.81 11700 4.8337 1.0
4.8183 16.95 11800 4.8324 1.0
4.8173 17.1 11900 4.8334 1.0
4.8217 17.24 12000 4.8338 1.0
4.8174 17.39 12100 4.8323 1.0
4.8193 17.53 12200 4.8358 1.0
4.8203 17.67 12300 4.8313 1.0
4.8182 17.82 12400 4.8311 1.0
4.8245 17.96 12500 4.8324 1.0
4.8195 18.1 12600 4.8301 1.0
4.8197 18.25 12700 4.8345 1.0
4.8163 18.39 12800 4.8326 1.0
4.8227 18.53 12900 4.8319 1.0
4.8254 18.68 13000 4.8321 1.0
4.8197 18.82 13100 4.8315 1.0
4.819 18.97 13200 4.8306 1.0
4.8106 19.11 13300 4.8297 1.0
4.8161 19.25 13400 4.8314 1.0
4.8147 19.4 13500 4.8340 1.0
4.8237 19.54 13600 4.8313 1.0
4.8186 19.68 13700 4.8298 1.0
4.8217 19.83 13800 4.8302 1.0
4.8239 19.97 13900 4.8297 1.0
4.8189 20.11 14000 4.8313 1.0
4.8254 20.26 14100 4.8299 1.0
4.8166 20.4 14200 4.8297 1.0
4.8199 20.55 14300 4.8294 1.0
4.8129 20.69 14400 4.8307 1.0
4.8175 20.83 14500 4.8285 1.0
4.8195 20.98 14600 4.8281 1.0
4.82 21.12 14700 4.8293 1.0
4.8136 21.26 14800 4.8293 1.0
4.8177 21.41 14900 4.8287 1.0
4.826 21.55 15000 4.8288 1.0
4.8177 21.7 15100 4.8296 1.0
4.8165 21.84 15200 4.8303 1.0
4.8246 21.98 15300 4.8282 1.0
4.8146 22.13 15400 4.8276 1.0
4.819 22.27 15500 4.8279 1.0
4.814 22.41 15600 4.8295 1.0
4.8195 22.56 15700 4.8274 1.0
4.8189 22.7 15800 4.8275 1.0
4.822 22.84 15900 4.8274 1.0
4.8195 22.99 16000 4.8274 1.0
4.8146 23.13 16100 4.8274 1.0
4.8126 23.28 16200 4.8271 1.0
4.8172 23.42 16300 4.8272 1.0
4.8214 23.56 16400 4.8277 1.0
4.821 23.71 16500 4.8278 1.0
4.8212 23.85 16600 4.8274 1.0
4.819 23.99 16700 4.8277 1.0
4.8165 24.14 16800 4.8274 1.0
4.8212 24.28 16900 4.8268 1.0
4.8198 24.43 17000 4.8272 1.0
4.8228 24.57 17100 4.8281 1.0
4.8159 24.71 17200 4.8272 1.0
4.8123 24.86 17300 4.8274 1.0
4.8143 25.0 17400 4.8284 1.0
4.8174 25.14 17500 4.8289 1.0
4.8243 25.29 17600 4.8276 1.0
4.8145 25.43 17700 4.8283 1.0
4.8129 25.57 17800 4.8277 1.0
4.815 25.72 17900 4.8272 1.0
4.8155 25.86 18000 4.8279 1.0
4.8217 26.01 18100 4.8269 1.0
4.8106 26.15 18200 4.8277 1.0
4.8188 26.29 18300 4.8270 1.0
4.8232 26.44 18400 4.8277 1.0
4.816 26.58 18500 4.8278 1.0
4.8159 26.72 18600 4.8275 1.0
4.8199 26.87 18700 4.8274 1.0
4.8149 27.01 18800 4.8278 1.0
4.8103 27.16 18900 4.8279 1.0
4.8244 27.3 19000 4.8275 1.0
4.8217 27.44 19100 4.8279 1.0
4.8168 27.59 19200 4.8277 1.0
4.8111 27.73 19300 4.8287 1.0
4.816 27.87 19400 4.8279 1.0
4.8166 28.02 19500 4.8282 1.0
4.8129 28.16 19600 4.8281 1.0
4.8207 28.3 19700 4.8275 1.0
4.8196 28.45 19800 4.8274 1.0
4.8208 28.59 19900 4.8277 1.0
4.811 28.74 20000 4.8280 1.0
4.8176 28.88 20100 4.8280 1.0
4.8126 29.02 20200 4.8283 1.0
4.8161 29.17 20300 4.8279 1.0
4.8134 29.31 20400 4.8278 1.0
4.8201 29.45 20500 4.8279 1.0
4.8185 29.6 20600 4.8283 1.0
4.8174 29.74 20700 4.8280 1.0
4.8145 29.89 20800 4.8280 1.0

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.13.0+cu117
  • Datasets 2.0.0
  • Tokenizers 0.13.2
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results