Edit model card

llama3-8b-milora-alpaca-11-v1

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7712

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 256
  • total_eval_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.7446 0.9927 68 1.7712

Framework versions

  • PEFT 0.13.3.dev0
  • Transformers 4.46.2
  • Pytorch 2.3.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
14
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for klcsp/llama3-8b-milora-alpaca-11-v1

Adapter
(536)
this model