Generative classification
Collection
Collection of auto-regressive models tuned for text classification
•
3 items
•
Updated
flan-t5-small-for-classification
This is an additional fine-tuned flan-t5-large model on many classification datasets.
The model supports prompt-tuned classification and is suitable for complex classification settings such as resumes classification by criteria.
You can use the model simply generating the text class name or using our unlimited-classifier.
The library allows to set constraints on generation and classify text into millions of classes.
To use it with transformers library take a look into the following code snippet:
# pip install accelerate
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("knowledgator/flan-t5-large-for-classification")
model = T5ForConditionalGeneration.from_pretrained("knowledgator/flan-t5-large-for-classification", device_map="auto")
input_text = "Define sentiment of the following text: I love to travel and someday I will see the world."
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
Using unlimited-classifier
# pip install unlimited-classifier
from unlimited_classifier import TextClassifier
classifier = TextClassifier(
labels=[
'positive',
'negative',
'neutral'
],
model='knowledgator/flan-t5-large-for-classification',
tokenizer='knowledgator/flan-t5-large-for-classification',
)
output = classifier.invoke(input_text)
print(output)