File size: 11,137 Bytes
c1493c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
datasets:
- konsman/setfit-messages-updated-influence-level
metrics:
- accuracy
widget:
- text: The influence level of Staying hydrated is especially important for older
    adults to prevent dehydration.
- text: The influence level of Regularly updating emergency contact information is
    important for the elderly.
- text: 'The influence level of Early detection saves lives. Support breast cancer
    awareness month.  Wear pink, spread awareness. Stand with us this breast cancer
    awareness month. '
- text: 'The influence level of Mental Health Day is approaching. Join our online
    discussion on well-being.  Prioritize mental health. Participate in our online
    discussion this Mental Health Day. '
- text: The influence level of Regular kidney function tests are important for those
    with high blood pressure.
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/all-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/all-mpnet-base-v2
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: konsman/setfit-messages-updated-influence-level
      type: konsman/setfit-messages-updated-influence-level
      split: test
    metrics:
    - type: accuracy
      value: 0.47368421052631576
      name: Accuracy
---

# SetFit with sentence-transformers/all-mpnet-base-v2

This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [konsman/setfit-messages-updated-influence-level](https://huggingface.co/datasets/konsman/setfit-messages-updated-influence-level) dataset that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 384 tokens
- **Number of Classes:** 4 classes
- **Training Dataset:** [konsman/setfit-messages-updated-influence-level](https://huggingface.co/datasets/konsman/setfit-messages-updated-influence-level)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0     | <ul><li>'The influence level of Understanding the effects of aging on the body is key for caregivers.'</li><li>'The influence level of Regular check-ups are key to maintaining good health.'</li><li>'The influence level of Balanced nutrition is key for maintaining health in old age.'</li></ul>                                                                                                                                                                                                                                 |
| 1     | <ul><li>"The influence level of Time for your 3pm medication! Please take as directed.  Friendly reminder: It's time for your 3pm medication. Ensure to take it as prescribed."</li><li>'The influence level of Regular bladder function tests are important for elderly individuals.'</li><li>'The influence level of How was your telehealth session? Share your feedback.  Help us improve. Provide feedback on your recent telehealth appointment. '</li></ul>                                                                    |
| 2     | <ul><li>"The influence level of A support group meeting is scheduled for tomorrow at 5pm. It's a great opportunity to share and learn.  Connect with others in our support group meeting tomorrow. See you at 5pm!"</li><li>'The influence level of Safety first! Please update your emergency contact details in our system.  Ensure swift help when needed. Update your emergency contacts in our app. '</li><li>'The influence level of Regularly discussing health concerns with doctors is important for the elderly.'</li></ul> |
| 3     | <ul><li>'The influence level of Understanding the role of dietary supplements in elderly health is important.'</li><li>'The influence level of Proper medication management is essential for effective treatment.'</li><li>"The influence level of Your child's health is paramount. Reminder for the pediatrician appointment tomorrow.  Ensure the best for your child. Don't miss the pediatrician appointment set for tomorrow. "</li></ul>                                                                                       |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.4737   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("konsman/setfit-messages-label-v2")
# Run inference
preds = model("The influence level of Regularly updating emergency contact information is important for the elderly.")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 12  | 20.8438 | 36  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0     | 8                     |
| 1     | 8                     |
| 2     | 8                     |
| 3     | 8                     |

### Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2.2041595048800003e-05, 2.2041595048800003e-05)
- head_learning_rate: 2.2041595048800003e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0031 | 1    | 0.1587        | -               |
| 0.1562 | 50   | 0.116         | -               |
| 0.3125 | 100  | 0.0918        | -               |
| 0.4688 | 150  | 0.0042        | -               |
| 0.625  | 200  | 0.0005        | -               |
| 0.7812 | 250  | 0.0012        | -               |
| 0.9375 | 300  | 0.0005        | -               |
| 1.0938 | 350  | 0.0005        | -               |
| 1.25   | 400  | 0.0003        | -               |
| 1.4062 | 450  | 0.0002        | -               |
| 1.5625 | 500  | 0.0002        | -               |
| 1.7188 | 550  | 0.0001        | -               |
| 1.875  | 600  | 0.0001        | -               |
| 2.0312 | 650  | 0.0002        | -               |
| 2.1875 | 700  | 0.0001        | -               |
| 2.3438 | 750  | 0.0001        | -               |
| 2.5    | 800  | 0.0001        | -               |
| 2.6562 | 850  | 0.0001        | -               |
| 2.8125 | 900  | 0.0001        | -               |
| 2.9688 | 950  | 0.0001        | -               |
| 3.125  | 1000 | 0.0002        | -               |
| 3.2812 | 1050 | 0.0001        | -               |
| 3.4375 | 1100 | 0.0001        | -               |
| 3.5938 | 1150 | 0.0001        | -               |
| 3.75   | 1200 | 0.0001        | -               |
| 3.9062 | 1250 | 0.0001        | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.2
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->