File size: 11,137 Bytes
c1493c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
datasets:
- konsman/setfit-messages-updated-influence-level
metrics:
- accuracy
widget:
- text: The influence level of Staying hydrated is especially important for older
adults to prevent dehydration.
- text: The influence level of Regularly updating emergency contact information is
important for the elderly.
- text: 'The influence level of Early detection saves lives. Support breast cancer
awareness month. Wear pink, spread awareness. Stand with us this breast cancer
awareness month. '
- text: 'The influence level of Mental Health Day is approaching. Join our online
discussion on well-being. Prioritize mental health. Participate in our online
discussion this Mental Health Day. '
- text: The influence level of Regular kidney function tests are important for those
with high blood pressure.
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/all-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/all-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: konsman/setfit-messages-updated-influence-level
type: konsman/setfit-messages-updated-influence-level
split: test
metrics:
- type: accuracy
value: 0.47368421052631576
name: Accuracy
---
# SetFit with sentence-transformers/all-mpnet-base-v2
This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [konsman/setfit-messages-updated-influence-level](https://huggingface.co/datasets/konsman/setfit-messages-updated-influence-level) dataset that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 384 tokens
- **Number of Classes:** 4 classes
- **Training Dataset:** [konsman/setfit-messages-updated-influence-level](https://huggingface.co/datasets/konsman/setfit-messages-updated-influence-level)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | <ul><li>'The influence level of Understanding the effects of aging on the body is key for caregivers.'</li><li>'The influence level of Regular check-ups are key to maintaining good health.'</li><li>'The influence level of Balanced nutrition is key for maintaining health in old age.'</li></ul> |
| 1 | <ul><li>"The influence level of Time for your 3pm medication! Please take as directed. Friendly reminder: It's time for your 3pm medication. Ensure to take it as prescribed."</li><li>'The influence level of Regular bladder function tests are important for elderly individuals.'</li><li>'The influence level of How was your telehealth session? Share your feedback. Help us improve. Provide feedback on your recent telehealth appointment. '</li></ul> |
| 2 | <ul><li>"The influence level of A support group meeting is scheduled for tomorrow at 5pm. It's a great opportunity to share and learn. Connect with others in our support group meeting tomorrow. See you at 5pm!"</li><li>'The influence level of Safety first! Please update your emergency contact details in our system. Ensure swift help when needed. Update your emergency contacts in our app. '</li><li>'The influence level of Regularly discussing health concerns with doctors is important for the elderly.'</li></ul> |
| 3 | <ul><li>'The influence level of Understanding the role of dietary supplements in elderly health is important.'</li><li>'The influence level of Proper medication management is essential for effective treatment.'</li><li>"The influence level of Your child's health is paramount. Reminder for the pediatrician appointment tomorrow. Ensure the best for your child. Don't miss the pediatrician appointment set for tomorrow. "</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.4737 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("konsman/setfit-messages-label-v2")
# Run inference
preds = model("The influence level of Regularly updating emergency contact information is important for the elderly.")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 12 | 20.8438 | 36 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 8 |
| 1 | 8 |
| 2 | 8 |
| 3 | 8 |
### Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2.2041595048800003e-05, 2.2041595048800003e-05)
- head_learning_rate: 2.2041595048800003e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0031 | 1 | 0.1587 | - |
| 0.1562 | 50 | 0.116 | - |
| 0.3125 | 100 | 0.0918 | - |
| 0.4688 | 150 | 0.0042 | - |
| 0.625 | 200 | 0.0005 | - |
| 0.7812 | 250 | 0.0012 | - |
| 0.9375 | 300 | 0.0005 | - |
| 1.0938 | 350 | 0.0005 | - |
| 1.25 | 400 | 0.0003 | - |
| 1.4062 | 450 | 0.0002 | - |
| 1.5625 | 500 | 0.0002 | - |
| 1.7188 | 550 | 0.0001 | - |
| 1.875 | 600 | 0.0001 | - |
| 2.0312 | 650 | 0.0002 | - |
| 2.1875 | 700 | 0.0001 | - |
| 2.3438 | 750 | 0.0001 | - |
| 2.5 | 800 | 0.0001 | - |
| 2.6562 | 850 | 0.0001 | - |
| 2.8125 | 900 | 0.0001 | - |
| 2.9688 | 950 | 0.0001 | - |
| 3.125 | 1000 | 0.0002 | - |
| 3.2812 | 1050 | 0.0001 | - |
| 3.4375 | 1100 | 0.0001 | - |
| 3.5938 | 1150 | 0.0001 | - |
| 3.75 | 1200 | 0.0001 | - |
| 3.9062 | 1250 | 0.0001 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.2
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |