koolaidoz's picture
End of training
9442ecf verified
|
raw
history blame
2.2 kB
---
license: apache-2.0
base_model: yuval6967/wav2vec2-base-finetuned-gtzan
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: wav2vec2-base-finetuned-gtzan-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.78
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-finetuned-gtzan-finetuned-gtzan
This model is a fine-tuned version of [yuval6967/wav2vec2-base-finetuned-gtzan](https://huggingface.co/yuval6967/wav2vec2-base-finetuned-gtzan) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3065
- Accuracy: 0.78
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.6708 | 0.9956 | 112 | 1.2056 | 0.75 |
| 0.6752 | 2.0 | 225 | 1.1245 | 0.78 |
| 0.1894 | 2.9956 | 337 | 1.0640 | 0.81 |
| 0.2192 | 4.0 | 450 | 1.3034 | 0.76 |
| 0.2675 | 4.9956 | 562 | 1.0633 | 0.81 |
| 0.1237 | 6.0 | 675 | 1.3065 | 0.78 |
### Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1