kpriyanshu256's picture
update model card README.md
73a35e9
metadata
language:
  - br
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: openai/whisper-large-v2-breton
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: br
          split: test
          args: br
        metrics:
          - name: Wer
            type: wer
            value: 39.92705800625217

openai/whisper-large-v2-breton

This model is a fine-tuned version of openai/whisper-large-v2 on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7162
  • Wer: 39.9271

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Wer
0.7423 0.1 100 0.8363 57.1553
0.4361 1.07 200 0.6833 46.7176
0.2227 2.03 300 0.6483 42.5929
0.1472 3.0 400 0.6511 42.4627
0.0892 3.1 500 0.6633 40.9604
0.0651 4.07 600 0.6807 39.7534
0.0416 5.04 700 0.6870 41.2383
0.0352 6.0 800 0.7315 39.9010
0.022 6.1 900 0.7201 40.4307
0.0195 7.07 1000 0.7162 39.9271

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2